首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Raman spectra of the (GaN)129, (SiO2)86, and (GaN)54(SiO2)50 nanoparticles were calculated using the molecular dynamics method. The spectrum of (SiO2)86 had three broad bands only, whereas the Raman spectrum of (GaN)129 contained a large number of overlapping bands. The form of the Raman spectrum of (GaN)54(SiO2)50 was determined by the arrangement of the GaN and SiO2 components in it. The nanoparticle with a GaN nucleus had a continuous fairly smooth spectrum over the frequency range 0 ≤ ω ≤ 600 cm−1, whereas the spectrum of the nanoparticle with a SiO2 nucleus contained well-defined bands caused by vibrations of groups of atoms of different kinds and atoms of the same kind.  相似文献   

2.
In this paper we report the results obtained from inelastic neutron scattering measurements on Zr2NiH1.9 and Zr2NiH4.6 using triple-axis spectrometer at Dhruva reactor, Trombay. The spectrum up to 35 meV represents largely the lattice modes of Zr and Ni atoms. The vibrational frequencies of hydrogen atoms are expected predominantly at higher energies. The phonon spectra from 35–180 meV were recorded using a Be filter as analyser. In order to analyse the observed neutron spectra, we assume a set of Ein-stein modes due to the hydrogen atoms which are delta functions in energy. These delta functions are broadened by the resolution of the instrument. The vibrational frequencies obtained from the fitting of the observed phonon spectra have been assigned to various tetrahedral sites in both the compounds.  相似文献   

3.
Submicron-powder luminophores CaMoO4 and CaWO4 obtained via solid-phase reactions have been studied using diffuse-reflection (DR) spectroscopy and photoluminescence (PL) spectroscopy. It is found that the diffuse-reflection spectrum in the range of a fundamental absorption edge of <300 nm is distorted by PL overlapping, so that subsequent calculations of optical band gap E g of luminophores CaMoO4 and CaWO4 result in an overestimation of this value. An algorithm for the correct processing of diffuse-reflection spectra is described. It is based on a subtraction of the photoluminescence spectrum in the range of fundamental absorption. The correct E g values and energy values for the defect levels in the bandgap of CaWO4 and CaMoO4 are determined to amount to 4.78, 4.83, and 4.86 ± 0.01 eV and 3.97, 4.07, 4.16 ± 0.01 eV, respectively.  相似文献   

4.
The thin-film photocatalysts TiO2/MoO3 and TiO2/MoO3:V2O5 obtained by a combination of sol–gel and sintering techniques were studied using the photooxidation of probing dyes, EPR spectroscopy, X-ray diffraction analysis, and electron microscopy. It was shown that due to charge accumulation caused by UV irradiation, these photocatalysts retain their oxidative activity and ability for self-sterilization in the dark for a long time after irradiation was terminated (up to 5 h for TiO2/MoO3:V2O5).  相似文献   

5.
The Raman spectra of Hg2F2 polycrystals are experimentally measured for the first time. The spectra of Hg2F2 are interpreted using X-ray diffraction analysis and group-theoretical treatment. The results obtained are discussed in comparison with the spectra of Hg2Hal2 crystals.  相似文献   

6.
We report the Fourier transform infrared (FTIR)–Raman spectroscopy study of spinel Li–Fe–Ti–O oxides viz., LiFeTiO4 and Li2FeTiO4 in order to probe structural details such as type of bonding networks viz., octahedral and tetrahedral, and type of different atomic bonds present in those materials. Both the samples were prepared through solid-state reaction route prior to high-energy ball-milling. All the phases prepared through solid-state reaction and ball-milled were probed using X-ray diffraction, field emission scanning electron microscopy, and FTIR–Raman spectroscopy. X-ray diffraction study indicates spinel phase formation with Fd3m space group symmetry for both LiFeTiO4 and Li2FeTiO4. However, pure phase of Li2FeTiO4 was not achieved in these preparation routes, rather mixed phases of Li2FeTiO4 and Fe2TiO4 were achieved. Field emission scanning electron microscopy (FESEM) analysis indicated porous microstructure for LiFeTiO4 while more agglomerated microstructure for Li2FeTiO4. Ball-milling reduces the grain size partly for both the samples. FTIR–Raman spectroscopy indicates the presence of LiO4 tetrahedral, LiO6 and TiO6 octahedral in the spinel network. Presence of Li–Li–O type bonding was also indicated from spectroscopy analysis. Existence of Fe2TiO4 phase with Li2FeTiO4 was also identified from both FTIR and Raman spectrum. Effect of ball-milling on the spectrum has been exhibited by broadening and peak shifting the FTIR–Raman spectrum, arising from the enhanced lattice strain and structural disorder.  相似文献   

7.
Structural aspects of powders containing magnetic nanoparticles Fe3O4/CoFe2O4 with the anticipated “core-shell” structure are considered by means of comparative analysis with individual particles of Fe3O4, CoFe2O4 in accordance of data obtained from X-ray powder diffraction and small-angle scattering of X-ray (synchrotron) radiation and neutrons. It is shown that magnetic particles in the powders under study have a strong polydispersity and form complex aggregates. Characteristic sizes of the crystallites, as well as a ratio of magnetite to cobalt-ferrite in the composition of the Fe3O4/CoFe2O4 particles were evaluated from the analysis of the diffraction peaks. Аnalyzing the data on small-angle scattering, the dimensional characteristics of particles and aggregates, as well as the volume fraction of the last ones in the powders, have been obtained. Fractal dimensions of aggregates are determined. A significant difference is observed in the scattering on Fe3O4/CoFe2O4 particles and the total scattering consisting of partial contributions to scattering on individual magnetite (Fe3O4) and cobalt-ferrite (CoFe2O4) powders, which does not exclude the formation of the “core-shell” structure.  相似文献   

8.
In this article, a hydrothermal method was developed to synthesize Co3O4 nanocubes using hydrogen peroxide (H2O2) as oxidant, Co(NO3)2·6H2O as a cobalt source. The products are characterized in detail by multiform techniques including X-ray diffraction (XRD), energy dispersive X-ray analysis (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the obtained products are Co3O4 nanocubes with size ranging between 20 and 40 nm. The effects of the hydrogen peroxide concentration on the size of the products have been studied. The electrocatalytic activities of H2O2 reduction on Co3O4 nanocubes in phosphate buffer were also evaluated.  相似文献   

9.
A. Oueslati 《Ionics》2017,23(4):857-867
A lithium yttrium diphosphate LiYP2O7 was prepared by a solid-state reaction method. Rietveld refinement of the X-ray diffraction pattern suggests the formation of the single phase desired compound with monoclinic structure at room temperature. The infrared and Raman spectrum of this compound was interpreted on the basis of P2O7 4? vibrations. The AC conductivity was measured in the frequency range from 100 to 106 Hz and temperatures between 473 and 673 K using impedance spectroscopy technique. The obtained results were analyzed by fitting the experimental data to the equivalent circuit model. The Cole–Cole diagram determined complex impedance for different temperatures. The angular frequency dependence of the AC conductivity is found to obey Jonscher’s relation. The temperature dependence of σ AC could be described in terms of Arrhenius relation with two activation energies, 0.87 eV in region I and 1.36 eV in region II. The study of temperature variation of the exponent(s) reveals two conduction models: the AC conduction dependence upon temperature is governed by the correlated barrier hopping (CBH) model in region I (T < 540 K) and non-overlapping small polaron tunneling (NSPT) model in region II (T > 540 K). The near value of activation energies obtained from the equivalent circuit and DC conductivity confirms that the transport is through ion hopping mechanism dominated by the motion of the Li+ ion in the structure of the investigated material.  相似文献   

10.
Nonstoichiometric Bi2WO6 photocatalyst with the composition of Bi2?+?x WO6?+?1.5x (?0.25 ≤ x ≤ 1) wa synthesized by a facile solid state reaction method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis absorption spectrum. The Bi2.5WO6.75 photocatalyst showed excellent visible-light-driven photocatalytic performance; nearly 100 % of RhB (10 ppm, pH?=?3?~?4) was decomposed within 25 min, which demonstrated that nonstoichiometric semiconductors could be an efficient visible-light-driven photocatalyst.  相似文献   

11.
A Li0.5FeV1.5O4 sample was synthesized using sol-gel route. The X-ray diffraction study indicates formation of spinel phase (with Fd3m space group) for this sample. LiO4, LiO6, and V-O bonds were identified from the Raman spectrum, while LiO4 and Fe-O bonds were identified from the FTIR spectrum of this sample phase. The FESEM study indicates formation of inhomogeneous grains. The surface area of 74.39 m2/g was estimated from the Brunauer-Emmett-Teller (BET) surface area analysis technique. The cyclic voltammetry study of Li0.5FeV1.5O4 indicates an anodic peak at 2.1 V while a cathodic peak at 1.98 V. The charge-discharge study exhibits two voltage plateaus respectively at 2.1 and at 4 V. Stable electrochemical capacity of 40 mAh/g for Li0.5FeV1.5O4 was found for 30 cycles. The electrochemical impedance spectroscopy study indicates smaller bulk resistance and higher ionic diffusion, i.e., less Warburg impedance for this phase. An energy density of 89 Wh/kg, a power density of 33 W/kg, and a 90% Coulombic efficiency was achieved with relatively good cyclic stability from Li0.5FeV1.5O4.  相似文献   

12.
Raman scattering in Rb2TeBr6 and Cs2TeBr6 crystals is studied. The phonon spectra of the crystals are calculated using the factor group method. The number of Raman-active modes, their symmetries, and selection rules are found. Observed Raman spectrum lines are identified with atomic vibration modes of the crystal.  相似文献   

13.
PbZr0.53Ti0.47O3/LaNiO3 (PZT/LNO) hetero-structures have been successfully deposited on MgO, SrTiO3, Al2O3 and Si substrate by chemical solution routes, respectively. The X-ray diffraction measurements show that out-of-plane lattice parameters of PZT increase as increase of thermal expansion coefficient of substrate. Polarization fatigues of Pt/PZT/LNO capacitors are strongly affected by the thermal strain caused by difference of thermal expansion coefficient between PZT and substrate materials. High fatigue resistance of Pt/PZT/LNO can be obtained by using substrate with similar thermal expansion coefficient as PZT. PACS 77.84.Dy; 78.20.Ci; 81.20.Fw  相似文献   

14.
Rare-earth-based infinite coordination polymer (RE-ICP) spheres with diameters ranging from 50 nm to 2 μm have been prepared using meso-2,3-dimercaptosuccinic acid (DMSA) as ligand under hydrothermal conditions. RE2O2SO4 microspheres with similar morphology were obtained by calcining the corresponding RE-ICP spheres. However, as for Ce-ICP and Sc-ICP, CeO2 and Sc2O3 were obtained. The products were characterized using X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, infrared spectroscopy, laser Raman spectrometry, and energy-dispersive X-ray spectrum. Elemental analysis and inductive coupled plasma atomic emission spectrometer were adopted to study the composition of the Eu-ICP. To explore their potential applications, several samples of the products were selected and their properties were investigated. The Eu-ICP and Eu2O2SO4 microspheres give strong red emissions when excited with a 394-nm ultraviolet light. Furthermore, the Eu-ICP displays a high selectivity for Fe(III). The obtained CeO2 has a strong absorption in the UV region and the Gd2O2SO4 microspheres show paramagnetic behavior.
Graphical abstract A series of RE2O2SO4 microspheres were prepared using a coordination polymer precursor method.
  相似文献   

15.
A structural model of the cubic paraelectric phase of a Fe3B7O13Br crystal belonging to the boracite family has been developed using the data obtained by single-crystal X-ray diffraction with due regard for the results of extended X-ray absorption fine structure (EXAFS) spectroscopy. It has been shown that the best agreement between the data obtained by these two methods is achieved within a model assuming a disorder in the arrangement of both the Fe and Br atoms and a high degree of correlation of their displacements. It has been found that, during the phase transition from the rhombohedral ferroelectric phase to the cubic paraelectric phase, no significant transformation of the structure is observed on a local level. In this case, a change in the macroscopic symmetry occurs predominantly as a result of the variation in the set of possible spatial orientations of stable structural fragments, which is characteristic of order-disorder phase transitions.  相似文献   

16.
The crystal structure and phonon spectrum of PrFe3(BO3)4 are ab initio calculated in the context of the density functional theory. The ion coordinates in the unit cell of a crystal and the lattice parameters are evaluated from the calculations. The types and frequencies of the fundamental vibrations, as well as the line intensities of the IR spectrum, are determined. The elastic constants of the crystal are calculated. A “seed” frequency of the vibration strongly interacting with the electron excitation on the praseodymium ion is obtained for low-frequency A2 mode. The calculated results are in agreement with the known experimental data.  相似文献   

17.
Metastable solid solutions (SS) Mn3FeTiSbO9 and Mn4FeTi2SbO12 with the ilmenite structure (space group R\(\bar 3\)) have been prepared by quenching at normal conditions. The compositions of the compounds have been justified using EDX spectroscopy and X-ray diffraction. The magnetic properties of SSs have been analyzed by comparison with ferrimagnetic ilmenite Mn2FeSbO6 (TN = 269 K) as a natural mineral and ceramics obtained at high pressure and high temperature. The solid solutions have been characterized as dilute magnetic systems formed as a result of substitution of nonmagnetic cations Ti4+ for a part of Fe3+ and Sb5+ cations. Mn3FeTiSbO9 is considered as a ferromagnetic with TN = 171 K and Mn4FeTi2SbO12 as a magnetic with the concentration of magnetic clusters below the percolation threshold.  相似文献   

18.
Single crystal of a new organic–inorganic hybrid material [C6H10(NH3)2]3CuBr4.3Br was synthesized by the slow evaporation method at room temperature and characterized by X-ray diffraction, FTIR, Raman spectroscopy, UV–Vis, dielectric measurements, and Hirschfield surface analysis. The title compound crystallizes in trigonal system \( P\overline{3} \).The crystal packing is governed by the N-H…Br and non-classical C-H…Br hydrogen-bonding interactions between the 1, 2-diamoniumcyclohexane cations, the tetrahedral [CuBr4]3? anions, and the isolated ion Br?. Theoretical calculations were performed using density functional theory (DFT) for studying the molecular structure, vibrational spectra, and optical properties of the investigated molecule in the ground state. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The optical properties were investigated by optical absorption and show two bands at 260 and 305 nm.  相似文献   

19.
The electronic structure of cerium systems, the hybridization of 4 f and outer-shell electrons, and the influence of the position of the localized 4 f level with respect to the Fermi level E F in the conduction band have been investigated. The CeCu6, CePd3, CeSi2, and CeF3 systems have been studied using X-ray photoelectron spectroscopy. The densities of states have been calculated by the tight-binding linearized muffin-tin orbital method within the atomic sphere approximation, which takes into account the covalent character of bonds and the nonspherical distribution of the electron density. The results obtained from the calculations of the total density of states are in good agreement with the valence band X-ray photoelectron data for the systems under investigation. It has been shown that the differences in the properties of the cerium systems are determined by the specific features of their electronic structure. A strong interatomic interaction is characteristic of heavy-fermion systems.  相似文献   

20.
In2O3 particles with different morphology were controllably synthesized on silicon substrates by thermal evaporation of In grains at 900 °C. The structure and morphology of the In2O3 particles were evaluated using X-ray diffraction, and scanning and transmission electron microscopies. The evolution in shapes as the ratio of {100} relative to {111} increases is clearly observed. The photoluminescence spectrum of the obtained In2O3 structures exhibits UV emission centered at about 378 nm and wide-band emission covering the green and orange regions with three peaks around 525, 572, and 604 nm. PACS 81.05.Hd; 81.07.Bc; 81.16.-c; 61.46.-w; 81.40.Gh  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号