首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The microstructural evolution and the martensitic transformation (bcc–hcp and bcc–fcc) mechanisms during the solidification process of liquid metal Pb were studied by molecular dynamics simulation. Results indicate that, with the decrease of temperature, the system undergoes two phase transitions: from the liquid state into a metastable bcc phase first and then from the bcc phase into a coexisting crystal structure of hcp and fcc phases. Moreover, the complicated martensitic transformation processes are clearly observed by cluster type index method (CTIM) and the tracing method. The two transformation mechanisms are very analogous at the atomic level; the essential difference between them is that, in the bcc–hcp transformation, two adjacent layers shift in opposite directions, whereas in the bcc–fcc transformation, the top layer and bottom layer shift in opposite directions relative to the middle layer. The specific mechanisms for the bcc–hcp and bcc–fcc transformations are confirmed to correspond to the revised Burgers mechanism and Bain mechanism, respectively.  相似文献   

2.
用分子动力学方法模拟了沿〈001〉晶向应变加载和卸载情况下单晶铁中体心立方(bcc)与六方密排(hcp)结构的相互转变,分析了相变的可逆性和微结构演化特征.微观应力的变化显示样品具有超弹性性质,而温度变化表明在相变和逆相变过程中均出现放热现象.相变起始于爆发式均匀形核,晶核由块状颗粒迅速生长为沿{011}晶面的片状分层结构; 而卸载逆相变则从形核开始就呈现片状形态,且相界面晶面指数与加载相变完全一致,表现出形态记忆效应.在两hcp晶核生长的交界面易形成面心立方(fcc)堆垛层错. fcc通过在hcp晶粒内  相似文献   

3.
The behavior of localized plasticity macrodomains is experimentally studied at the final stage of the plastic flow in going to necking and ductile fracture in fcc, bcc, and hcp materials. General features of the localization process at the stage of prefracture are found. They are a constant velocity of domains and their tendency to consistently move toward the focus of a bundle of straight lines in space-time diagrams. A correlation between the type of fracture and the kinetics of localized plasticity domains is established.  相似文献   

4.
Strain-induced (elastic) interactions of oxygen, nitrogen and carbon atoms in IVA group metals, α-Ti, Zr, and -Hf, are calculated in the framework of the microscopic Krivoglaz-Kanzaki-Khachaturyan theory. The experimental elastic constants, lattice spacing of the host metal, and concentration expansion coefficients are used as the input numerical parameters. The resulting interactions are stronger in α-Ti than in α-Zr and α-Hf. A comparative analysis of interactions in the hcp IVA group metals with those in bcc and fcc solid solutions reveals the crystal structure effect. In general, the strain-induced interactions of O, N, and C in hcp IVA group metals are weaker than in bcc solid solutions and are stronger than in fcc solid solutions.  相似文献   

5.
Abstract

The structural energy differences have been calculated for zirconium as a function of pressure at zero temperature using the Andersen force theorem and the linear muffin tin orbital method. The structures included are the following: α (hcp), the room temperature room pressure phase, ω- a three atom simple hexagonal, bcc and fcc. Our calculations show that the bcc structure would become energetically most favourable above 11 GPa. This results is in agreement with well known correlation between the crystal structure and the d-electron population in transition metals at normal volume. The diamond anvil cell based high pressure x-ray diffraction experiments are in progress to verify this result.  相似文献   

6.
The frequencies of the phonon branches that correspond to the vibrations of the close-packed atomic planes in bcc, fcc, and hcp crystals with short-range interatomic interaction are shown to be described by a universal relationship, which only contains two parameters for each branch, for any polarization λ. These phonon branches correspond to the (ξ, ξ, 0) direction in bcc crystals, the (ξ, ξ, ξ) direction in fcc crystals, and the (0, 0, ξ) direction in hcp crystals. This universal relationship can only be violated by long-range interactions, namely, the interactions outside the sixth coordination shell in a bcc crystal, the fifth coordination shell in an fcc crystal, and the eleventh or tenth coordination shell in an hcp crystal. The effect of these long-range interactions for each phonon branch can be quantitatively characterized by certain parameters Δ nλ, which are simply expressed in terms of the frequencies of three phonons of the branch. The values of these parameters are presented for all bcc, fcc, and hcp metals whose phonon spectra are measured. In most cases, the proposed relationships for the frequencies are found to be fulfilled accurate to several percent. In the cases where the Δ nλ parameters are not small, they can give substantial information on the type and scale of long-range interaction effects in various metals.  相似文献   

7.
First-principles theory, based on the density-functional approach, is used to study the crystal structures of Ce and the light actinides (Th-Pu) at low temperatures as a function of hydrostatic pressure. Calculated ground-state properties, such as crystal structure, atomic volume and bulk modulus, are shown to be very well described within this theory. We present the following pressureinduced phase transitions: Ce, fcc -> bct -> hcp; Th, fcc -> bct -> hcp; Pa, bct -> alphaU bct -> hcp; U, alpha-U -> bct -> bcc; Np, alpha-Np -> beta-Np -> bcc; Pu, alpha-Pu -> alphaNp -> beta-Np -> bcc. We explain the occurrence of low-symmetry (complex) structures in these metals as a consequence of a symmetry-breaking mechanism that shows similarities to a Peierls distortion. The ultimate high-pressure phases are well accounted for in a canonical model for the f bands for these metals.  相似文献   

8.
By constrained spin-density functional calculations we estimate the relative role of the longitudinal and transversal fluctuations of the magnetic moments in the series of 3d metals (bcc Fe, hcp and fcc Co, and fcc Ni) for weak excitations from the ferromagnetic ground state. It is shown that the importance of longitudinal fluctuations strongly varies from relatively small in bcc Fe to large in fcc Ni. This means that a consistent adiabatic treatment of the low-energy spin fluctuations should include independent longitudinal fluctuations.  相似文献   

9.
Atomic-scale computer simulation is used to study the interaction between a vacancy and a cluster of self-interstitial atoms in metals with hcp, fcc and bcc crystal structure: α-zirconium, copper and α-iron. Effects of cluster size, atomic structure, dislocation nature of the cluster side and temperature are investigated. A vacancy can recombine with any interstitial in small clusters and this does not affect cluster mobility. With increasing sizes clusters develop dislocation character and their interaction with vacancies depends on whether the cluster sides dissociate into partial dislocations. A vacancy recombines only on undissociated sides and corners created with undissociated segments. Vacancies inside the cluster perimeter do not recombine but restrict cluster mobility. Temperature enhances recombination by either increasing the number of recombination sites or assisting vacancy diffusion towards such sites. The results are discussed with relevance to differences in irradiation microstructure evolution of bcc, fcc and hcp metals and higher level theoretical modelling techniques.  相似文献   

10.
The impact toughness (fracture energy-temperature) curves of neutron-irradiated bcc metals and alloys, including structural alloys applied in nuclear power, are theoretically analyzed. The analysis is based on the stress-strain curves of these metals and alloys with allowance for the effect of temperature and irradiation on their parameters. The energy of ductile fracture of smooth and notched (Charpy) specimens during both static and impact loading is shown to substantially depend on the uniform strain and its temperature and radiation-hardening dependences. As a result of this analysis, the dependence of the critical brittle-ductile transition temperature on the radiation dose is established. Theoretical relations obtained for the transition parameters are illustrated with experimental data for martensitic steels.  相似文献   

11.
Inelastic neutron scattering on in situ grown bcc single crystals of the group 4 metals Ti, Zr and Hf show a band of low energy and strongly damped phonons. Geometrical considerations show how these damped lattice vibrations achieve the displacements necessary for the two martensitic phase transitions from bcc to ω (under pressure) and from bcc to hcp (upon lowering the temperature). The low energy and temperature dependent phonons are precursor fluctuations of the hcp or ω phase within the bcc phase.  相似文献   

12.
The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied.  相似文献   

13.
K. Kang  W. Cai 《哲学杂志》2013,93(14-15):2169-2189
Fracture of silicon and germanium nanowires in tension at room temperature is studied by molecular dynamics simulations using several interatomic potential models. While some potentials predict brittle fracture initiated by crack nucleation from the surface, most potentials predict ductile fracture initiated by dislocation nucleation and slip. A simple parameter based on the ratio between the ideal tensile strength and the ideal shear strength is found to correlate very well with the observed brittle versus ductile behaviours for all the potentials used in this study. This parameter is then computed by ab initio methods, which predict brittle fracture at room temperature. A brittle-to-ductile transition (BDT) is observed in MD simulations at higher temperature. The BDT mechanism in semiconductor nanowires is different from that in the bulk, due to the lack of a pre-existing macrocrack that is always assumed in bulk BDT models.  相似文献   

14.
The stability of the ferromagnetic state in Fe, Co, and Ni metals under high pressure is investigated using generalized gradient approximation (GGA) and GGA+U within the density functional theory (DFT). It is found that the ferromagnetic state under pressure is very different for Fe, Co, and Ni metals, and is closely associated with the crystal structure. In the case of Fe, a ferromagnetic bcc ground state is obtained at ambient pressure and a nonmagnetic hcp ground state is found at pressure around 12 and 115 GPa for GGA and GGA+U, respectively. For Co, the phase transition from a ferromagnetic hcp to a nonmagnetic fcc is found around 107 GPa for GGA. In contrast to Fe and Co, a ferromagnetic fcc state in Ni is maintained even at 200 GPa. The calculated results suggest that the suppression of ferromagnetism in Fe, Co, and Ni is due to pressure-induced decrease of the density of state at the Fermi level.  相似文献   

15.
Group IV transition metals titanium, zirconium, and hafnium are expected to transform from an ambient hexagonal close packed (hcp, alpha-phase) to a body centered cubic (bcc, beta-phase) at high pressures. This transition path is usually facilitated by the occurrence of an intermediate hexagonal phase (distorted bcc, omega-phase). The existence of a bcc phase in zirconium and hafnium at high pressures has been known for the past ten years; however, its occurrence in titanium has been theoretically predicted but never observed. We report a novel unexpected transformation in titanium metal from an omega phase to an orthorhombic phase (distorted hcp, gamma-phase) at a pressure of 116+/-4 GPa.  相似文献   

16.
Uncharged block copolymer micelles display thermoreversible transitions between close-packed and bcc lattices for a range of concentration, solvent selectivity, and copolymer composition. Using small-angle x-ray scattering on shear-oriented solutions, highly aligned fcc crystals are seen to transform epitaxially to bcc crystals, with fcc/bcc orientational relationships that are well established in martensitic transformations in metals. The transition is driven by decreasing solvent selectivity with increasing temperature, inducing solvent penetration of the micellar core.  相似文献   

17.
Physics of the Solid State - The thermodynamic properties of bcc and fcc iron phases are calculated at the temperature of the polymorphic bcc–fcc phase transition using the method of...  相似文献   

18.
本文采用基于密度泛函理论的第一性原理方法,计算了压力作用下Fe从bcc到hcp结构相变的势能面、相变路径以及相变过程中的磁性相边界.结果表明:与Burgers路径不同,相变过程中bcc结构(110)bcc面的剪切和相对滑移相互耦合,并伴随有(110)bcc面间距的减小;这一相变机制可以解释Fe的静高压实验中在相变初期观察到的hcp结构异常.因此,并不需要像Wang和Ingalls提出的那样,在相变过程中引入一个亚稳定的fcc相来解释这些实验结果.对相变势能面的计算表明剪切对相变的发生有激活作用.此外,分析表明相变过程中涉及复杂的磁性转变,相变过渡态位置正好位于磁性相边界上,并对原子磁性对结构转变影响的物理机制进行了讨论.  相似文献   

19.
A change in the local order of a bounded complex (dusty) plasma in the process of its crystallization and melting has been examined by molecular dynamics simulations. The dynamics of microparticles is considered in the framework of a Langevin thermostat, the pair interaction between charged particles is described by a screened Coulomb potential (Yukawa potential) with the hard wall potential as a confinement. It has been shown that the beginning of the crystallization of such a system is accompanied by the formation of clusters with the hexagonal close packed (hcp) structure; a noticeable number of these clusters are then transformed to the face centered cubic (fcc) phase. A plasma crystal formed after crystallization consists of the metastable hcp phase, fcc clusters, and a small number of clusters with a body centered cubic (bcc) crystal lattice. Beginning with a certain threshold value of the thermostat temperature, the number of fcc/bcc clusters decreases sharply with increasing temperature, which is an important signature of the beginning of the melting of the plasma crystal.  相似文献   

20.
In this work, first-principles DFT scalar-relativistic calculations using the GGA functionals were performed to study the equilibrium properties of alternate structural phases of Co and Rh. The results show that cobalt orders ferromagnetically in the bcc, fcc and hcp phases, where the Co atoms carry magnetic moments of 1.80 μB, 1.71 μB and 1.69 μB, respectively. Rhodium is ferromagnetic only in the bcc phase where the Rh atoms carry a moment of 0.56 μB. The results yield evidence for the influence of the crystal symmetry in establishing ferromagnetic order in transition metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号