首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
S. A. Egorov 《Technical Physics》2013,58(11):1600-1603
A new technique is designed to plot stress-strain curves during torsion at hydrostatic pressure up to 250 MPa. It is used to study the effect of pressure on the torsional strain to failure of copper. The experimental results demonstrate that the plasticity of the material increases in the pressure range 0–150 MPa and remains constant in the range 150–250 MPa. This reaction of the material is likely to be related to the fact that pressure can increase the dislocation density required for plastic flow.  相似文献   

2.
Ductile bulk metallic glass   总被引:1,自引:0,他引:1  
We report on experimental evidence of pronounced global plasticity measured in monolithic Pt57.5Cu14.7Ni5.3P22.5 bulk metallic glass under both bending and unconfined compression loading conditions. A plastic strain of 20% is measured, never before seen in metallic glasses. Also, permanent deformation and a strain exceeding 3% before failure is observed during bending of 4 mm thick samples. To date, no monolithic metallic material has exhibited such a combination of high strength, extensive ductility, and high elastic limit. The large plasticity is reflected in a high Poisson ratio of 0.42, which causes the tip of a shear band to extend rather than initiate a crack. This results in the formation of multiple shear bands and is the origin of the observed large global ductility and very high fracture toughness, approximately 80 MPa m(-1/2).  相似文献   

3.
利用荧光分光光度计对处于常温、压力范围为0.1~60 MPa、浓度为10~(-6)mol·L~(-1)的蒽的三维荧光光谱及浓度比为1∶1的蒽-芴、蒽-萘、蒽-菲、蒽-苊、蒽-荧蒽的三维荧光光谱进行了测定,并通过分析不同压力下蒽的荧光峰位置和峰强度的变化来探讨压力对荧光光谱的影响。结果显示,随着压力升高,蒽的荧光峰并未发生漂移,但是荧光强度发生了显著变化。峰位置为250/382 nm的荧光峰在60 MPa时荧光强度达到最大值,相较于常压下,荧光强度增加了13.6%。其他多环芳烃的加入会改变蒽的高压荧光特性,当蒽中加入了萘,峰位置为250/382 nm的荧光峰强度在10 MPa时达到最大值,相较于常压下,荧光强度增加了9.35%。  相似文献   

4.
Some new data on the effects of pressure on a poly(p-oxybenzoyl) polymer are presented and existing data on various other polymers are reviewed and analyzed. It is demonstrated that the effect of pressure on the elastic response of a polymer depends on the location of Tg relative to room temperature, and that the modulus-pressure data can be used to estimate the pressure shift of Tg. Also, the pressure coefficient of the modulus increase can be deduced from considerations of finite strain elasticity theory. There is a marked increase of tensile and compressive yield strengths with pressure and this can be interpreted in terms of a Mohr-Coulomb type of yield criterion. In some polymers, hydrostatic pressure inhibits cold drawing and reduces the elongation to fracture. However, in other polymers which at atmospheric pressure fracture prior to yielding, increasing the pressure above some critical value can cause significant increases in ductility. This effect is utilized to show that even rigid high-temperature polymers, like polymide, can be successfully cold extruded at room temperature if a proper high-pressure environment is present. The nature of the changes occurring near the brittle-ductile transition pressure have been investigated by use of the scanning electron microscope and the possible influence of the pressure medium has been examined. SEM pictures of fracture surfaces and fracture modes of various polymers will be presented.  相似文献   

5.
The influence of annealing on the microstructure and mechanical properties of ultrafine-grained (UFG) commercially pure aluminum preliminarily subjected to severe plastic deformation by high pressure torsion has been studied. It is found that annealing of the UFG samples in the temperature range 363–473 K for 1 h leads to increases in the conventional yield strength and ultimate tensile strength, which attained maximum values (50 and 30%, respectively) after annealing at 423 K. A key role of nonequilibrium high-angle grain boundaries in the strengthening effect of UFG-Al due to annealing is discussed. The increase in the strength of UFG-Al is accompanied by a significant decrease in its ductility. A new approach of increasing the ductility of UFG-Al with retaining a high strength is proposed. It is an introduction of additional dislocation density to a UFG structure relaxed by annealing.  相似文献   

6.
Z. F. Zhang  G. He  J. Eckert 《哲学杂志》2013,93(9):897-915
The room-temperature deformation and fracture behaviour of Ti-based composites with ductile dendrites, prepared by copper mold casting and arc-melting techniques, was investigated. Under compressive loading, the Ti-based composites display high fracture strength (about 2000?MPa) and good ductility (about 4 or 10%). The yield strength of the Ti-based composites is relatively low (about 565–923?MPa). However, they have a large strain-hardening ability before failure, due to the interactions between shear bands and dendrites. For the arc-melted Ti-based composites, fracture often occurs in a shear mode with a high plasticity (about 10%). In contrast, the cast Ti-based composites break or split into several parts with a compressive plasticity of 4%, rather than failing in a shear mode. A new fracture mechanism, i.e. distensile fracture, is proposed for the first time to elucidate the failure of the as-cast Ti-based composites. Based on the difference in the fracture modes of the differently prepared composites, the relationships between shear and distensile fracture mechanisms and the corresponding fracture criteria are discussed.  相似文献   

7.
Effects of Ti addition on the microstructures and mechanical properties of AlCrFeNiMo_(0.5) Ti_x(X = 0, 0.25, 0.4,0.5, 0.6, 0.75) high entropy alloys(HEAs) are investigated. All these HEAs of various Ti contents possess dual BCC structures, indicating that Ti addition does not induce the formation of any new phase in these alloys. As Ti addition X varies from 0 to 0.75, the Vickers hardness(HV) of the alloy system increases from 623.7 HV to766.2 HV, whereas the compressive yield stress firstly increases and then decreases with increasing X above 0.5.Meanwhile, the compressive ductility of the alloy system decreases with Ti addition. The AlCrFeNiMo_(0.5)Ti_(0.6) and AlCrFeNiMo_(0.5)Ti_(0.75) HEAs become brittle and fracture with very limited plasticity. In the AlCrFeNiMo_(0.5)Ti_x HEAs, the AlCrFeNiMo_(0.5) HEA possesses the highest compressive fracture strength of 4027 MPa and the largest compressive plastic strain of 27.9%, while the AlCrFeNiMo_(0.5)Ti_(0.5) HEA has the highest compressive yield strength of 2229 MPa and a compressive plastic strain of 10.1%. The combination of high strength and large plasticity of the AlCrFeNiMo_(0.5) Ti_x(X = 0, 0.25, 0.4, 0.5) HEAs demonstrates that this alloy system is very promising for engineering applications.  相似文献   

8.
ABSTRACT

A low carbon high Mn, Ti microalloyed dual phase TWIP steel has been processed through cold rolling and annealing. X-ray diffraction reveals the maximum austenite (≈92%) in HRACST sample whereas, the 50CD sample shows 29% ferrite. The microstructure of HRAC and HRACST samples reveal austenite grains with annealing twins and deformation induced ferrite (DIF). The higher amount of DIF along with deformation twins form during cold deformation. Annealing at 500°C shows recovery, whereas at 700°C shows partial recrystallisation and at 900°C reveals almost full recrystallisation. TEM microstructures of the 900°C for 30?min samples reveal annealing twins with TiC particle. Strong Brass {110}<112> and Goss{110}<001> texture components are observed in HRAC, HRACST and 50CD samples. Goss Twin (GT) {113}<332> and Copper Twin (Cu-T) {552}<115> components are observed in 50CD sample. Addition of Ti results in an average grain size of 20?μm. Maximum YS (1176?MPa) and UTS (1283?MPa) values with the lowest ductility of 11% have been obtained for the 50CD sample which is related to the formation of extensive deformation twin and a higher fraction of DIF. 700°C-30?min and 700°C-60?min samples show an increase in ductility (23% and 34%, respectively) with a marginal decrease in tensile strength (1054?MPa). Annealing at 900°C shows ductility restoration up to 60% with higher tensile strength compared to HRACST sample. Ductile fracture of HRAC and HRACST samples transform to brittle fracture in the 50CD sample. Annealing at 900°C for 30?min shows ductile fracture with some (Fe, Mn)S and TiC particles.  相似文献   

9.
王中光  黄元士  葛庭燧 《物理学报》1965,21(6):1253-1263
本文进行了淬火状态的、含0.52,0.91,3.46和5.15%Mg的铝合金的扭转疲劳试验,测定了相应的ΔE-N曲线和Tm-N曲线。实验结果指出,对于含镁量为0.52,0.91%的试样来说,当表面扭应变较小时,ΔE在起始时,随着应力循环数的增加而下降。当表面扭应变增大时,ΔE-N曲线始而变平,继而上升,直至达到一较高值才稳定下来。当试样中的含镁量为3.46%时,在扭应变不太大时,ΔE-N曲线的变化情况与Al-4%Cu合金的相象,不过当扭应变足够大时,ΔE起始时上升,并且经过一个峯值又下降。当含镁量增至5.15%时,ΔE-N曲线的表现已完全与Al-4%Cu合金的相象,在所用的最高表面扭应变下也并不表现出明显的峯值。对于所用的各种成分的试样来说,最大抗扭矩Tm起始总是上升的。上述结果都可以根据溶质镁原子在疲劳过程中渐渐进入位错,形成气团来解释。可以认为,在铝镁合金的情形,产生ΔE的因素以及影响ΔE的大小的因素,对于疲劳载荷的起始阶段来说,可能都主要是由于气团的作用。当含镁量较低时,对于足够高的表面扭应变来说,气团较为松动,位错能够拖着气团运动,从而需要作功,使ΔE和Tm都上升。但当合镁量较高时,或表面扭应变不太大时,在疲劳一起始就形成了能够对于位错起钉扎作用的足够浓的气团。继续进行疲劳时,进入位错的溶质原子将使位错的动性进一步降低,导致ΔE起始下降,Tm起始上升。此外,还对于经过不同时效处理的Al-0.52%Mg和Al-3.46%Mg合金进行了疲劳试验,观测到应变时效现象,这与上述的溶质原子气团模型相合。  相似文献   

10.
Materials of a gradient structure have been shown to possess both high strength and high ductility. To date, materials of a gradient structure can only be produced in small quantities. In this paper, we report a novel ‘cyclic skin-pass rolling’ (CSPR) technique capable of producing sheets of gradient structure in large quantities. Both experimental and analytical/numerical investigations are reported. In the experiments on aluminium sheets, the outer layer was subjected to 40 passes of CSPR with a reduction ratio of 1% per pass. After CSPR, the sample surface shows an ultrafine-grained microstructure with a mean grain size of 206?nm, while the annealed microstructure is retained in the core of the sample. Compared with cold-rolled aluminium sheets fabricated with the same total reduction ratio, CSPR-processed aluminium sheets have the same yield stress but improved uniform elongation (2.4 times). The scanning electron microscopy was used to study the fracture surface, and The transmission electron microscopy to examine the microstructure near the fracture end, in order to analyse the improvement in ductility. In addition, the finite element method was used to simulate the roll-sample contact pressure and strain distribution as well as residual stress on the sheet surface during CSPR, and to better understand the mechanism leading to improvement of ductility of the sheets by the CSPR technique.  相似文献   

11.
With an identical temperature profile, various cure pressures were applied to determine the effect of cure pressure on void distribution and interlaminar shear strength (ILSS) of [0]10 T800/X850 composite laminate. Void shape, distribution, and void content within the composite laminates were characterized using optical microscope. The ILSS was evaluated using short-beam three-point bending tests and their interface debonding failure and fracture surfaces were determined using scanning electron microscope. The experimental results indicated that long strips voids are generated in the low-pressure curing stage. The voids mainly exist in the two forms of rod-like shape and spherical shape, and their number and size decrease as the cure pressure increases. The influence of cure pressure on the void content and ILSS shows a different trend in two stages: when the cure pressure is lower than 0.4 MPa, the ILSS decrease by 5.21% with 1% increase in void content, and their relationship is inversely linear. However, when the cure pressure is higher than 0.4 MPa, the void content is less than 1% and ILSS increase slightly by 1.69% when the cure pressure goes from 0.4 to 0.6 MPa, the influence of cure pressure on void content and ILSS is clearly presented.  相似文献   

12.
The effect of temperature and direction of preliminary torsion in the austenitic state on the degree of strain recovery upon heating of a TiNi alloy has been investigated. It is shown that an increase in the preliminary deformation temperature from 500 to 700 K leads to an increase in the degree of shape recovery upon heating of the material studied. In particular, a 20% strain at a temperature of 500 K decreases the recovery coefficient by 20%, whereas the same preliminary strain at 700 K deteriorates the shape recovery by only 4%. It is established that, applying preliminary torsion in the austenitic and martensitic states in opposite directions, one can obtain an increase in the shape memory strain with an increase in the preliminary plastic strain. Thus, at some plastic strains (λ pl > 10%), the strain recovered upon heating may even exceed the strain set in the martensitic state.  相似文献   

13.
For enhancing the micromirror properties like tilting angle and stability during actuation, Fe-based metallic glass (MG) was applied for torsion bar material. A micromirror with mirror-plate diameter of 900?μm and torsion bar dimensions length 250?μm, width 30?μm and thickness 2.5?μm was chosen for the tilting angle tests, which were performed by permanent magnets and electromagnet setup. An extremely large tilting angle of over -270° was obtained from an activation test by permanent magnet that has approximately 0.2?T of magnetic strength. A large mechanical tilting angle of over -70° was obtained by applying approximately 1.1?mT to the mirror when 93?mAwas applied to solenoid setup. The large-tilting angle of the micromirror is due to the torsion bar, which was fabricated with Fe-based MG thin film that has large elastic strain limit, fracture toughness, and excellent magnetic property.  相似文献   

14.
Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (< 1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive "work hardening" and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The "work-hardening" capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.  相似文献   

15.
A crystal plasticity finite-element (CPFE) constitutive model is developed to investigate the mechanical properties and microtexture evolution of torsion-processed single-crystal copper by indentation modelling. The mesh-to-mesh solution (mapping) is used during modelling to bridge the gap between two different processes (torsion and indentation) and integrate them. The parameters for CPFE modelling are validated by comparison with experimental observations. The numerical results indicate that linearly increased effective strain along the radius of the torsion-processed single-crystal copper workpiece may slightly improve its radical hardness and ductility, while grain refinement will enhance its radical hardness and ductility significantly.  相似文献   

16.
用高能量钕玻璃激光器产生的脉冲激光(0~25 J)烧蚀Ar气氛中的Cu靶,观测了激光诱导Cu等离子体的发射光谱强度随环境气压(0.1~0.5 MPa)的增强规律。为了探讨辐射增强的机理,在局部热平衡(LTE)近似条件下,测量了等离子体的电子温度随环境气压的变化。实验结果表明,等离子体的电子温度随着环境气压的升高而正比增加。为了进一步了解等离子体的空间行为,测量了Ar气气压分别为0.1,0.3,0.5 MPa时,等离子体电子温度的空间分布。  相似文献   

17.
 为了获得高产细菌纤维素菌株,对初选的细菌纤维素菌株J2进行超高压诱变,运用Plackett-Burman设计对影响高压诱变菌株生产细菌纤维素的因素效应进行评价,采用Box-Behnken试验优化发酵培养基组成。试验结果表明,超高压诱变压力、时间对细菌纤维素菌株有显著或极显著影响。细菌纤维素菌株高压诱变条件为压力250 MPa、时间15 min、温度25 ℃。经超高压诱变,获得产纤维素能力高、遗传稳定性好的诱变菌株M438。影响诱变菌株M438发酵生产细菌纤维素的关键因子是酵母浸出汁、MgSO4和无水乙醇。优化的发酵培养基为碳源5%(葡萄糖∶蔗糖为4∶1)、酵母浸出汁1.25%、CaCl20 15%、ZnSO4 0.20%、K2HPO4 0.20%、MgSO4 0.93%、富马酸0.30%、无水乙醇0.50%。利用此培养基培养诱变细菌纤维素菌株M438,其纤维素产量是优化前的1.84倍,是超高压诱变之前的2.69倍。超高压技术用于细菌纤维素菌株的诱变育种是可行的。发酵培养基的优化可显著提高菌株M438发酵生产细菌纤维素的能力。  相似文献   

18.
吴敏干  刘毅  林福昌  刘思维  孙建军 《强激光与粒子束》2020,32(4):045002-1-045002-7
基于相应的数学模型来表征液电脉冲激波的产生和传播过程,搭建了液电式碎岩综合试验平台,分析了典型的激波特性的仿真和实测结果。给出了不同充电电压下液电脉冲激波特性的仿真结果,并分析了充电电压对激波特性的影响。结果表明:充电电压为11 kV时,激波的压力峰值为2.67 MPa,激波能量为27.30 J,波前时间为2.16μs,激波加载速率为1.24 MPa/μs,电能转化为激波能量的效率为13.35%;提高电容充电电压,激波压力峰值和激波能量增大,波前时间减少,激波加载速率增加,但电能转化为激波能量的效率降低。利用建模分析的方法,可以根据放电回路参数预测液电脉冲激波特性,从而为进一步研究激波破碎岩石的形态和效果提供理论依据。  相似文献   

19.
采用SST k-w湍流模型对超临界CO2/丙烷混合工质水平管内的传热特性进行数值模拟研究。管径d=4 mm,加热段L2=800 mm;混合工质浓度配比为100/0、95/5、90/10、85/15、80/20、75/25;质量流速为150~250 kg·m?2·s?1;热流密度为30~40 kW·m?2,入口温度293 K,入口压力7.5~30 MPa。随着丙烷浓度的增加,CO2/丙烷二元混合工质的临界压力降低,临界温度升高,丙烷浓度从5%增加到25%,换热系数峰值降低6.19%~31.45%,但增加丙烷浓度可提高拟临界温度后的换热效果。P=7.5~8.5 MPa,换热系数有明显峰值;P=20~30 MPa,换热系数变化规律无明显峰值,并随压力的升高而减小。混合工质的换热系数随质量流速的增大而增大。同一流体温度所对应的换热系数,随着热流密度的增加而减小。  相似文献   

20.
采用SST k-w湍流模型对超临界CO2/丙烷混合工质水平管内的传热特性进行数值模拟研究。管径d=4 mm,加热段L2=800 mm;混合工质浓度配比为100/0、95/5、90/10、85/15、80/20、75/25;质量流速为150~250 kg·m?2·s?1;热流密度为30~40 kW·m?2,入口温度293 K,入口压力7.5~30 MPa。随着丙烷浓度的增加,CO2/丙烷二元混合工质的临界压力降低,临界温度升高,丙烷浓度从5%增加到25%,换热系数峰值降低6.19%~31.45%,但增加丙烷浓度可提高拟临界温度后的换热效果。P=7.5~8.5 MPa,换热系数有明显峰值;P=20~30 MPa,换热系数变化规律无明显峰值,并随压力的升高而减小。混合工质的换热系数随质量流速的增大而增大。同一流体温度所对应的换热系数,随着热流密度的增加而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号