首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Scheduling coupled-operation jobs with exact time-lags on a single machine has a wide range of applications. In that problem, each job consists of two operations with given processing times, which should be scheduled on a single machine observing a given time-lag. The general case of the problem with arbitrary processing times of operations and arbitrary time lags is known to be NP-hard in the strong sense and the problem remains NP-hard for many special cases. In order to develop a local search algorithm for the problem, we first explore two possible approaches for representing feasible solutions and their neighborhoods based on maintaining a permutation of first operations of the jobs or maintaining a full permutation of all operations. The first representation appears to be unpromising since, as we prove, the problem of finding an optimal sequence of second operations for a fixed sequence of first operations is NP-hard in the strong sense even in the case of unit processing times. We elaborate the second approach by developing a tabu search heuristic based on efficient job re-insertion. Empirical evaluation demonstrates superiority of the developed algorithm in comparison with the earlier published algorithms.  相似文献   

2.
In this paper we consider the problem of minimizing number of tardy jobs on a single batch processing machine. The batch processing machine is capable of processing up to B jobs simultaneously as a batch. We are given a set of n jobs which can be partitioned into m incompatible families such that the processing times of all jobs belonging to the same family are equal and jobs of different families cannot be processed together. We show that this problem is NP-hard and present a dynamic programming algorithm which has polynomial time complexity when the number of job families and the batch machine capacity are fixed. We also show that when the jobs of a family have a common due date the problem can be solved by a pseudo-polynomial time procedure.  相似文献   

3.
We consider the problem of scheduling multi-operation jobs on a singe machine to minimize the total completion time. Each job consists of several operations that belong to different families. In a schedule each family of job operations may be processed as batches with each batch incurring a set-up time. A job is completed when all of its operations have been processed. We first show that the problem is strongly NP-hard even when the set-up times are common and each operation is not missing. When the operations have identical processing times and either the maximum set-up time is sufficiently small or the minimum set-up time is sufficiently large, the problem can be solved in polynomial time. We then consider the problem under the job-batch restriction in which the operations of each batch is partitioned into operation batches according to a partition of the jobs. We show that this case of the problem can be solved in polynomial time under a certain condition.  相似文献   

4.
On scheduling an unbounded batch machine   总被引:1,自引:0,他引:1  
A batch machine is a machine that can process up to c jobs simultaneously as a batch, and the processing time of the batch is equal to the longest processing time of the jobs assigned to it. In this paper, we deal with the complexity of scheduling an unbounded batch machine, i.e., c=+∞. We prove that minimizing total tardiness is binary NP-hard, which has been an open problem in the literature. Also, we establish the pseudopolynomial solvability of the unbounded batch machine scheduling problem with job release dates and any regular objective. This is distinct from the bounded batch machine and the classical single machine scheduling problems, most of which with different release dates are unary NP-hard. Combined with the existing results, this paper provides a nearly complete mapping of the complexity of scheduling an unbounded batch machine.  相似文献   

5.
We consider the classical two-machine flow-shop scheduling for minimizing the total weighted completion time. For this problem, the computational complexity of a version in which the jobs have a common processing time on the second machine, has not been addressed. We show that the problem is unary NP-hard, answering an open problem posed in Zhu et al. (2016). Then we present an approximation algorithm for the problem with worst-case performance ratio at most 2.  相似文献   

6.
We consider the minmax regret (robust) version of the problem of scheduling n jobs on a machine to minimize the total flow time, where the processing times of the jobs are uncertain and can take on any values from the corresponding intervals of uncertainty. We prove that the problem in NP-hard. For the case where all intervals of uncertainty have the same center, we show that the problem can be solved in O(nlogn) time if the number of jobs is even, and is NP-hard if the number of jobs is odd. We study structural properties of the problem and discuss some polynomially solvable cases.  相似文献   

7.
It is known that for the open shop scheduling problem to minimize the makespan there exists no polynomial-time heuristic algorithm that guarantees a worst-case performance ratio better than 5/4, unless P≠NP. However, this result holds only if the instance of the problem contains jobs consisting of at least three operations. This paper considers the open shop scheduling problem, provided that each job consists of at most two operations, one of which is to be processed on one of the m⩾2 machines, while the other operation must be performed on the bottleneck machine, the same for all jobs. For this NP-hard problem we present a heuristic algorithm and show that its worst-case performance ratio is 5/4.  相似文献   

8.
We study the problem of scheduling n non-preemptive jobs on m unrelated parallel machines. Each machine can process a specified subset of the jobs. If a job is assigned to a machine, then it occupies a specified time interval on the machine. Each assignment of a job to a machine yields a value. The objective is to find a subset of the jobs and their feasible assignments to the machines such that the total value is maximized. The problem is NP-hard in the strong sense. We reduce the problem to finding a maximum weight clique in a graph and survey available solution methods. Furthermore, based on the peculiar properties of graphs, we propose an exact solution algorithm and five heuristics. We conduct computer experiments to assess the performance of our and other existing heuristics. The computational results show that our heuristics outperform the existing heuristics.  相似文献   

9.
We investigate the problem of Scheduling with Safety Distances (SSD) that consists in scheduling jobs on two parallel machines without machine idle time. Every job is already assigned to its machine, and we just have to specify an ordering of the jobs for each machine. The goal is to find orderings of the jobs such that the minimum time elapsed between any two job completion times is maximized. We prove that this problem is NP-hard in general and give polynomial time algorithms for special cases. These results combined establish a sharp borderline between NP-complete and polynomial solvable versions of the problem SSD.This research was supported by the Christian Doppler Laboratorium für Diskrete Optimierung.On leave from the Mathematics Section, Forestry University Nanjing, Nanjing, PR China.  相似文献   

10.
The relocation problem addressed in this paper is to determine a reconstruction sequence for a set of old buildings, under a limited budget, such that there is adequate temporary space to house the residents decanted during rehabilitation. It can be regarded as a resource-constrained scheduling problem where there is a set of jobs to be processed on a single machine. Each job demands a number of resources for processing and returns probably a different number of resources on its completion. Given a number of initial resources, the problem seeks to determine if there is a feasible sequence for the successful processing of all the jobs. Two generalizations of the relocation problem in the context of single machine scheduling with due date constraints are studied in this paper. The first problem is to minimize the weighted number of tardy jobs under a common due date. We show that it is NP-hard even when all the jobs have the same tardy weight and the same resource requirement. A dynamic programming algorithm with pseudo-polynomial computational time is proposed for the general case. In the second problem, the objective is to minimize the maximum tardiness when each job is associated with an individual due date. We prove that it is strongly NP-hard. We also propose a pseudo-polynomial time dynamic programming algorithm for the case where the number of possible due dates is predetermined.  相似文献   

11.
Complexity of a scheduling problem with controllable processing times   总被引:2,自引:0,他引:2  
We consider the problem of scheduling a set of independent jobs on a single machine so as to minimize the total weighted completion time, subject to the constraint that the total compression cost is less than or equal to a fixed amount. The complexity of this problem is mentioned as an open problem. In this note we show that the problem is NP-hard.  相似文献   

12.
We study a static stochastic single machine scheduling problem in which jobs have random processing times with arbitrary distributions, due dates are known with certainty, and fixed individual penalties (or weights) are imposed on both early and tardy jobs. The objective is to find an optimal sequence that minimizes the expected total weighted number of early and tardy jobs. The general problem is NP-hard to solve; however, in this paper, we develop certain conditions under which the problem is solvable exactly. An efficient heuristic is also introduced to find a candidate for the optimal sequence of the general problem. Our illustrative examples and computational results demonstrate that the heuristic performs well in identifying either optimal sequences or good candidates with low errors. Furthermore, we show that special cases of the problem studied here reduce to some classical stochastic single machine scheduling problems including the problem of minimizing the expected weighted number of early jobs and the problem of minimizing the expected weighted number of tardy jobs which are both solvable by the proposed exact or heuristic methods.  相似文献   

13.
The makespan minimization problem in flow shops with no-idle constraints on machines is considered. The latter means that each machine, once started, must process all its operations without intermediate idle time until all those operations are completed. The problem is known to be strongly NP-hard already for three machines. While being based on a geometrical approach, we propose several polynomial time heuristics (for the general case and for special cases of 3 and 4 machines) which provide asymptotically optimal solutions for the increasing number of jobs. A comprehensive review of relevant results is also presented.  相似文献   

14.
We consider some problems of scheduling jobs on identical parallel machines where job-processing times are controllable through the allocation of a nonrenewable common limited resource. The objective is to assign the jobs to the machines, to sequence the jobs on each machine and to allocate the resource so that the makespan or the sum of completion times is minimized. The optimization is done for both preemptive and nonpreemptive jobs. For the makespan problem with nonpreemptive jobs we apply the equivalent load method in order to allocate the resources, and thereby reduce the problem to a combinatorial one. The reduced problem is shown to be NP-hard. If preemptive jobs are allowed, the makespan problem is shown to be solvable in O(n2) time. Some special cases of this problem with precedence constraints are presented and the problem of minimizing the sum of completion times is shown to be solvable in O(n log n) time.  相似文献   

15.
In this paper, we study a vector scheduling problem with rejection on a single machine, in which each job is characterized by a d-dimension vector and a penalty, in the sense that, jobs can be either rejected by paying a certain penalty or assigned to the machine. The objective is to minimize the sum of the maximum load over all dimensions of the total vector of all accepted jobs, and the total penalty of rejected jobs. We prove that the problem is NP-hard and design two approximation algorithms running in polynomial time. When d is a fixed constant, we present a fully polynomial time approximation scheme.  相似文献   

16.
This note investigates two-machine flow shop scheduling with transportation constraints to minimize makespan. Recently, Soukhal et al. [A. Soukhal, A. Oulamara, P. Martineau, Complexity of flow shop scheduling problems with transportation constraints, European Journal of Operational Research 161 (2005) 32–41] proved that this problem is strongly NP-hard when the capacity of the truck is limited to two or three parts. The considered problem with blocking constraints is also proved to be strongly NP-hard by Soukhal et al. Unfortunately, their proofs contain mistakes. We point out their proofs’ invalidity and then show that, when the capacity of the truck is limited to two parts, the problem is binary NP-hard, and when the capacity of the truck is limited to three parts the problem is strongly NP-hard even if the jobs have a common processing time on machine one and all jobs have the same transportation time. We show also that the last result can be generalized to any fixed c (c ? 3) parts.  相似文献   

17.
We study the coordinated scheduling problem of hybrid batch production on a single batching machine and two-stage transportation connecting the production, where there is a crane available in the first-stage transportation that transports jobs from the warehouse to the machine and there is a vehicle available in the second-stage transportation to deliver jobs from the machine to the customer. As the job to be carried out is big and heavy in the steel industry, it is reasonable assumed that both the crane and the vehicle have unit capacity. The batching machine processes a batch of jobs simultaneously. Each batch occur a setup cost. The objective is to minimize the sum of the makespan and the total setup cost. We prove that this problem is strongly NP-hard. A polynomial time algorithm is proposed for a case where the job transportation times are identical on the crane or the vehicle. An efficient heuristic algorithm for the general problem is constructed and its tight worst-case bound is analyzed. In order to further verify the performance of the proposed heuristics, we develop a lower bound on the optimal objective function. Computational experiments show that the heuristic algorithm performs well on randomly generated problem instances.  相似文献   

18.
Two-Machine Flowshop Batching and Scheduling   总被引:2,自引:0,他引:2  
We consider in this paper a two-machine flowshop scheduling problem in which the first machine processes jobs individually while the second machine processes jobs in batches. The forming of each batch on the second machine incurs a constant setup time. The objective is to minimize the makespan. This problem was previously shown to be NP-hard in the ordinary sense. In this paper, we first present a strong NP-hardness result of the problem. We also identify a polynomially solvable case with either anticipatory or non-anticipatory setups. We then establish a property that an optimal solution for the special case is a lower bound for the general problem. To obtain near-optimal solutions for the general problem, we devise some heuristics. The lower bound is used to evaluate the quality of the heuristic solutions. Results of computational experiments reveal that the heuristics produce solutions with small error ratios. They also suggest that the lower bound is close to the optimal solution.  相似文献   

19.
We consider the problem of assigning a common due-date and sequencing a set of simultaneously available jobs on several identical parallel-machines. The objective is to minimize some penalty function of earliness, tardiness and due-date values. We show that the problem is NP-hard with either a total or a maximal penalty function. For the problem with a total penalty function, we show that the special case in which all jobs have an equal processing time is polynomially-solvable.  相似文献   

20.
We study a coordinated scheduling problem of production and transportation in which each job is transported to a single batching machine for further processing. There are m vehicles that transport jobs from the holding area to the batching machine. Each vehicle can transport only one job at a time. The batching machine can process a batch of jobs simultaneously where there is an upper limit on the batch size. Each batch to be processed occurs a processing cost. The problem is to find a joint schedule of production and transportation such that the sum of the total completion time and the total processing cost is optimized. For a special case of the problem where the job assignment to the vehicles is predetermined, we provide a polynomial time algorithm. For the general problem, we prove that it is NP-hard (in the ordinary sense) and present a pseudo-polynomial time algorithm. A fully polynomial time approximation scheme for the general problem is obtained by converting an especially designed pseudo-polynomial dynamic programming algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号