首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Abstract— Rates of photolysis, quantum yields of fluorescence, and fluorescence emission maxima for the dipeptides glycyltryptophan (Gly-Trp) and tryptophylglycine (Trp-Gly) and for free tryptophan (Trp) were determined under both degassed and aerated conditions in the pH range 4.5-10.0. The photolyses were performed at 25°C using 290 nm radiation from a 1000 W xenon lamp. Photolysis rates were determined by monitoring tryptophan fluorescence loss with time. It was found that Trp-Gly and free Trp showed similar behavior in that their fluorescence quantum yields and photolysis rates increased significantly above neutral pH. In contrast, the Gly-Trp fluorescence yield was smaller than that of Trp or Trp-Gly, showing no significant increase at high pH and the photolysis rate for Gly-Trp decreased with increasing pH. In comparing aerated to degassed samples, it was found that degassing had a far greater effect on the photolysis rates of Trp and Trp-Gly than on the photolysis rate of Gly-Trp especially at higher pH. But, degassing did not change the relative fluorescence quantum yields or fluorescence emission maxima of any of the three compounds. Possible mechanisms for photolysis under various experimental conditions were examined in light of the data.  相似文献   

2.
THE PHOTOLYSIS OF TRYPTOPHAN WITH 337.1 nm LASER RADIATION   总被引:7,自引:0,他引:7  
Abstract— Aqueous solutions of L-tryptophan were photolyzed by exposure to 337.1 nm radiation from a pulsed nitrogen laser. These data were compared with results for the 290 nm conventional-source photolysis of tryptophan. The progress of photolysis was monitored by fluorescence analysis of tryptophan. UV absorption spectroscopy, HPLC, TLC, and proton NMR spectroscopy. The loss of Trp was observed to be first order for 290 nm photolysis but of mixed order for 337.1 nm photolysis. Five photolysis products were detected by TLC analysis, including: N-formylkynurenine. kynurenine, tryptamine (detected after 290 nm photolysis but not 337.1 nm photolysis) and two unknown products. The tryptophan-containing peptides N-acetyl-tryptophanamide (NATA) and tryptophylglycine (Trp-Gly) were also observed to photolyze upon 337.1 nm laser radiation demonstrating that this phenomenon is not restricted to free tryptophan monomer.
Since Trp is not ordinarily thought to absorb U V radiation at wavelengths as long as 337.1 nm. a number of experiments were performed in an effort to determine the mechanism of photolysis at this wavelength. Evidence is presented which indicates that the 337.1 nm laser photolysis of Trp does not result from two photon absorption, dielectric breakdown, or other laser-specific processes. Instead. it is concluded that this photolysis results either from a very weak absorption tail extending to 337.1 nm in tryptophan itself or from a reaction involving an impurity sensitizer which absorbs the 337.1 nm radiation. The sensitizing impurity. if present, could not. however, be removed by preparative HPLC and could not be detected by TLC or fluorescence analysis.  相似文献   

3.
The environmental effect on Trp residues photolysis was investigated on four proteins containing a single Trp residue in environments of various polarities: glucagon (exposed residue), nuclease (partially buried residue), RNase T1 (fully buried residue) and melittin (exposed or partially buried residue depending on the salt concentration). Direct photolysis was performed in neutral N2-saturated phosphate solution at 20°C using 302 nm monochromatic light. Tryptophan loss was monitored by both absorption and fluorescence spectroscopy and by amino acid analysis. The results suggest that tryptophan photodegradation depends on the location of the residue in the protein, with regard to the exposure to the aqueous medium and to the neighbouring amino acids in the primary amino acid sequence and in the three dimensional structure. Photochemical products were not analysed but fluorescence spectra indicate that they vary with protein.  相似文献   

4.
Studies of acrylamide quenching of tryptophan (Trp) fluorescence, photochemistry, and photoionization have been conducted. Quenching of Trp fluorescence in aqueous solution by addition of acrylamide in the concentration range 0.0-0.5 M was measured and resulted in a Stern-Volmer quenching constant of KSV = 21 +/- 3 M-1. Photolysis experiments were performed in which Trp was photolyzed at 295 nm in the presence of varying concentrations of acrylamide. The loss of Trp was monitored using reverse-phase high performance liquid chromatography (RP-HPLC) and was observed to follow first order kinetics. Production of N-formylkynurenine (NFK) was observed by RP-HPLC in irradiated Trp samples both in the presence and absence of added acrylamide. In addition, no new photochemical product was detected. This was taken as evidence that acrylamide did not alter the photochemical pathway but just reduced the reaction rate as expected for a physical quenching mechanism. Plotting the reciprocal of photolysis rate constant versus acrylamide concentration produced a Stern-Volmer constant for quenching of Trp photochemistry of KSV = 6 +/- 2 M-1. The KSV values for both fluorescence quenching and photolysis quenching were thus large, implying efficient quenching of both processes by acrylamide. Assuming an excited singlet state lifetime of 2.8 ns, the calculated second-order quenching rate constants for fluorescence and photolysis were kq = 7.5 x 10(9) and 2.1 x 10(9) M-1 s-1 respectively. The possible involvement of photoionization in the photolysis mechanism was investigated by studies of acrylamide quenching of voltage transients produced by xenon flash lamp excitation of Trp at aqueous/teflon or aqueous/mica interfaces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Abstract— Measurements of fluorescence spectra and fluorescence intensity for tryptophan solutions at different pH show an effective decarboxylation and deamination of tryptophan molecules under UV irradiation. The nonexponential dose-relationship of decrease in total fluorescence of tryptophan solutions is due to the formation of the products retaining indole ring in the course of these reactions. Dose-relationships and quantum yields of indole ring photolysis, deamination and decarboxylation are determined for tryptophan at 254 nm irradiation. Indole ring destruction accounts for about 60% of the total photolysis of tryptophan. Decarboxylation of tryptophan is two times more effective than its deamination. In the absence of oxygen quantum yield of indole photolysis in tryptophan and in the products of decarboxylation and deamination is reduced by a factor of two and by approximately an order of magnitude, respectively. Tryptophan photolysis products which, when excited at 365 nm. fluoresce in the visible region are formed from an intermediate product of indole ring destruction.  相似文献   

6.
There has been considerable interest in the photochemistry of tryptophan in connection with ultraviolet inactivation of enzymes. Earlier flash photolysis work has demonstrated that the hydrated electron (e-aq) is an initial product in the irradiation of indole derivatives, accompanied by a longer-lived transient absorption near 500 nm attributed to an aromatic radical species[1–5]. Similar transients were observed in a recent flash photolysis study of lysozyme[6] in which it was proposed that inactivation is a consequence of electron ejection from 1 to 2 essential tryptophan residues in the active center. However, there has been uncertainty concerning the tryptophan radical structure and its relationship to the triplet state and radical spectra reported for tryptophan photolysis in low-temperature rigid media. This note reports a flash photolysis investigation of L-tryptophan (Trp) and 1-Methyl-L-tryptophan (1-MeTrp) undertaken to clarify these points. The flash photolysis apparatus and methods employed are described in Ref. [6].  相似文献   

7.
Abstract— The UV photolysis of tryptophan (Trp) and Trp-containing peptides in aerated aqueous solutions has been studied by ESR and spin-trapping techniques using f-nitrosobutane as the spin-trap. The photolysis of Trp alone at 290 nm gave rise to the addition of the spin-trap to carbon 3 of the indole ring. A large ESR signal from the hydronitroxide spin-adduct was also observed revealing the formation of hydrated electrons. Generally, the photolysis of Trp-containing dipeptides generated the deamination radical of the N-terminal amino acid followed by addition to the spin-trap. In the case of lysyl-Trp, a deamination radical from the side chain of lysine was proposed. A sensitization experiment with Trp as sensitizer and glycine (Gly) as substrate led to the generation of the deamination radical of Gly. Most of the observed free radicals resulting from the photolysis of Trp-containing peptides can be explained in terms of hydrated electrons reacting with the carbonyl group followed by deamination of the N-terminus.  相似文献   

8.
Polypeptides containing a basic amino acid close to their single tryptophan residue were irradiated with monochromatic 302 nm radiation. Tryptophan photolysis was monitored by absorption and fluorescence spectroscopy. Amino acid loss was evaluated by amino acid analysis. Only the protonated residues adjacent to tryptophan in the sequence were destroyed upon tryptophan excitation. This reaction is probably due essentially to direct interaction between the excited tryptophan and the neighbouring residue without electron solvation.  相似文献   

9.
The absorption and fluorescence spectra of 3-aminobenzo-1,2,4-triazine di-N-oxide (tirapazamine) have been recorded and exhibit a dependence on solvent that correlates with the Dimroth ET30 parameter. Time-dependent density functional theory calculations reveal that the transition of tirapazamine in the visible region is pi-->pi* in nature. The fluorescence lifetime is 98+/-2 ps in water. The fluorescence quantum yield is approximately 0.002 in water. The fluorescence of tirapazamine is efficiently quenched by electron donors via an electron-transfer process. Linear Stern-Volmer fluorescence quenching plots are observed with sodium azide, potassium thiocyanate, guanosine monophosphate and tryptophan (Trp) methyl ester hydrochloride. Guanosine monophosphate, tyrosine (Tyr) methyl ester hydrochloride and Trp methyl ester hydrochloride appear to quench the fluorescence at a rate greater than diffusion control implying that these substrates complex with tirapazamine in its ground state. This complexation was detected by absorption spectroscopy.  相似文献   

10.
Singlet excited state deactivation of a zinc phthalocyanine (ZnPc), porphycene (Po) and tetrapropyl-porphycene (PrPo) by anionic tryptophan (Trp) were investigated in cetyltrimethylammonium chloride (CTAC) micelles at pH 9.2 ± 0.1, regulated by a Tris buffer. Data obtained from steady-state experiments over a wide range of detergent and added NaCl concentrations were analyzed by using a pseudophase ion-exchange model (Abuin et al., J. Phys. Chem . 87, 5166–5172, 1983). The model was applied to derive singlet quenching rate constants for ZnPc and the porphycenes by Trp and the selectivity coefficient for Trp/Cl exchange at the micellar surface. The results point to an electron transfer quenching. Neutral tryptophan also quenches efficiently ZnPc fluorescence in CTAC without added buffer and Trp does not deactivate the triplet state of these dyes. By flash photolysis, only the absorption of the triplet species was detected.  相似文献   

11.
Abstract— Proteins are vulnerable to environmental UVB (290-320 nm) because aromatic amino acids, particularly Trp, absorb in this spectral region. We have shown previously that UVB impacts on ribulose-l,5-bisphosphate carboxylase/oxygenase (Rubisco), resulting in the formation of a 66 kDa photoproduct in vivo (Wilson et al, Plant Physiol. 109,221–229, 1995). To determine if Trp photolysis is involved in the production of this specific protein photoproduct, the effects of UVB on a homogeneous preparation of Rubisco were examined. A UVB photoproduct of 66 kDa, identical to the in vivo product, was formed in vitro. The 66 kDa product was shown by immunological methods to be a cross-link between a large subunit (53 kDa) and a small subunit (14 kDa). Time-resolved Trp fluorescence was used to demonstrate that a Trp fluorescence signal is lost with kinetics that mirror the rate of formation of the 66 kDa photoproduct, indicating that a Trp photolysis step is involved in the mechanism of photoproduct formation. The relative rates of both Trp photolysis and 66 kDa photoproduct formation did not change with Rubisco concentration, consistent with a monomolecular reaction that would occur between sub-units within a Rubisco holoenzyme complex. Finally, formation of the 66 kDa photoproduct was found to be pH dependent.  相似文献   

12.
Abstract— The influence of nucleotides or polynucleotides on the photophysics and the photochemistry of tryptophan (Trp) derivatives has been investigated in aqueous solutions using the 265 nm laser flash photolysis technique. In solutions containing mixtures of N -acetyltryptophanamide and uridine monophosphate (UMP) or mercurated dUMP, the Trp triplet and the hydrated electron (eaq) are quenched at almost diffusion controlled rates by the nucleotides leading to uracil reduction. Lysyl-tryptophyl-α-lysine (Lys-Trp-Lys) forms stable complexes in solution with normal or mercurated poly(uridylic acid) [poly(U)]. In the Poly(rU)-Lys-Trp-Lys complex the Trp triplet state is completely quenched, whereas the Trp triplet formation quantum yield is enhanced in complexes with mercurated poly(U). In this last case, the 'heavy atom effect' is characterized by a shortening of the Trp triplet lifetime in agreement with low temperature experiments. Our results also show that photoionization of Trp does occur in the complexed state with both polymers. The eaq lifetime is however longer with the complexed than with the free peptide.  相似文献   

13.
Fluorescence and laser-flash photolysis measurements have been performed on two pairs of diastereomeric dyads that contain the nonsteroidal anti-inflammatory drug (S)- or (R)-flurbiprofen (FBP) and (S)-tryptophan (Trp), which is a relevant amino acid present in site I of human serum albumin. The fluorescence spectra were obtained when subjected to excitation at 266 nm, where approximately 60% of the light is absorbed by FBP and approximately 40% is absorbed by Trp; the most remarkable feature observed in all dyads was a dramatic fluorescence quenching, and the residual emission was assigned to the Trp chromophore. In addition, an exciplex emission was observed as a broad band between 380 and 500 nm, especially in the case of the (R,S) diastereomers. The fluorescence lifetimes (tauF) at lambdaem=340 nm were clearly shorter in the dyads than in Trp-derived model compounds; in contrast, the values of tauF at lambdaem=440 nm (exciplex) were much longer. On the other hand, the typical FBP triplet-triplet transient absorption spectrum was obtained when subjected to laser-flash photolysis, although the signals were less intense than when FBP was directly excited under the same conditions. The main photophysical events in FBP-Trp dyads can be summarized as follows: (1) most of the energy provided by the incident radiation at 266 nm reaches the excited singlet state of Trp (1Trp*), either via direct absorption by this chromophore or by singlet singlet energy transfer from excited FBP (1FBP*); (2) a minor, yet stereoselective deactivation of 1FBP* leads to detectable exciplexes and/or radical ion pairs; (3) the main process observed is intramolecular 1Trp* quenching; and (4) the first triplet excited-state of FBP can be populated by triplet-triplet energy transfer from excited Trp or by back-electron transfer within the charge-separated states.  相似文献   

14.
Abstract— Laser flash photolysis of subtilisin BPN'at 265 nm has shown that photoionization of tryptophanyl (Trp) and tyrosinyl (Tyr) residues are the principal initial photochemical reactions. The initial products are the corresponding oxidized radicals. Trp and Tyr, and hydrated electrons (eaq) which react with the enzyme at: k (eaq+ subt. BPN') = 2.1 × 1010 M−1 s−1. The photoionization quantum yield was 0.032 ± 0.005 at 265 nm, which was enhanced 3.5-fold by simultaneous excitation at 265 and 530 nm. The photoionization yields were unchanged by 3 M bromide ion and 8 M urea. which did affect the enzyme fluorescence excited at 265 and 295 nm. A similar lack of correlation between the effects of perturbants on the photionization yields and fluorescence yields was found for subtilisin Carlsherg. The results indicate that the monophotonic and biphotonic ionization of the Trp residues does not involve the thermally-equilibrated. lowest excited singlet state and that singlet energy transfer from Tyr to Trp does not contribute to Trp photoionization. The photoinactivation quantum yield was 0.014 for 265 nm laser excitation. which was not changed by simultaneous 530 nm excitation. The corresponding quantum yield was 0.009 for low intensity 254 nm radiation, indicative of a biphotonic contribution to photoinactivation. The results are explained by postulating that photolysis of Trp-113 leads to disruption of hydrogen bonding to Asn-117 and a shift in the primary chain sequence associated with the aromatic substrate binding sites. The photoionization quantum yields in subtilisin BPN'and subtilisin Carlsberg agree with a model based on the assumption that exposed Trp and Tyr residues contribute independently at intrinsic photoionization efficiencies characteristic of the chromophores.  相似文献   

15.
Trp–DNA adducts resulting from UV irradiation of pyrimidine bases and nucleotides in the presence of tryptophan (Trp) have been the subject of previous research. However, the relative yield of the adducts compared with the UV screening effect of Trp has not been previously considered. To determine whether Trp–DNA adduct formation or absorption “screening” by Trp is the predominant process when DNA solutions are irradiated with UV light in the presence of Trp, we irradiated Trp-containing DNA oligonucleotide solutions with UVC light and incubated aliquots of those solutions with molecular beacons (MBs) to detect the damage. We observed a rapid decay of fluorescence of the MBs for pure DNA solutions, thereby indicating damage. However, in the presence of Trp, the fluorescence decay is prolonged, with time constants that increase exponentially with Trp concentration. The results are discussed in terms of a beneficial in vivo cellular protection rather than harmful adduct formation and suggest a net sacrificial absorption of UV light by Trp which actually protects the DNA from UV damage.  相似文献   

16.
The electrochemical behavior of tryptophan (Trp) and its derivatives, such as indole-3-acetic acid (IAA), 5-hydroxytryptamine (5-HT), 5-hydroxy-indole-3-acetic acid (5-HIAA) and glycyl-tryptophan (Gly-Trp) peptide at a glassy carbon electrode modified with hemin (hemin/GC electrode) by electropolymerization have been investigated in detail. The results showed that the hemin/GC electrode would catalyze the electrochemical oxidation of Trp and its derivatives, based on which a differential pulse voltammetric procedure has been proposed for determination of Trp and its derivatives. Meanwhile, the electrochemical reaction mechanism for these compounds at hemin/GC electrode has been also investigated, and the results indicated that a two electron and two proton transfer was involved in the electrode reaction process.  相似文献   

17.
Cucurbit[7]uril forms very strong complex with zwitterionic dipeptide Phe-Gly with affinity exceeding 10(7) M(-1) and effectively recognizes peptide sequence of Phe-Gly over Gly-Phe as well as Tyr-Gly over Gly-Tyr and Trp-Gly over Gly-Trp with relative affinities of 23 000, 18 000 and 2000, respectively.  相似文献   

18.
Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces   总被引:2,自引:0,他引:2  
Laser-induced fluorescence detection was used to measure photolysis rates of anthracene and naphthalene at the air-ice interface, and the kinetics were compared to those observed in water solution and at the air-water interface. Direct photolysis proceeds much more quickly at the air-ice interface than at the air-water interface, whereas indirect photolysis due to the presence of nitrate or hydrogen peroxide appears to be suppressed at the ice surface with respect to the liquid water surface. Both naphthalene and anthracene self-associate readily on the ice surface, but not on the water surface. The increase in photolysis rates observed on ice surfaces is not due to this self-association, however. The wavelength dependence of the photolysis indicates that it is due to absorption by the PAH. No dependence of the rate on temperature is seen, either at the liquid water surface or at the ice surface. Molecular oxygen appears to play a complex role in the photolytic loss mechanism, increasing or decreasing the photolysis rate depending on its concentration.  相似文献   

19.
In the present contribution we address the study of the interaction of a flavonoid-derivative licochalcone A (LA) with human serum albumin (HSA). The application of circular dichroism, UV-Vis absorption, fluorescence and laser flash photolysis combined with molecular mechanics, molecular dynamics and quantum mechanical calculations of rotational strength afforded a clear picture of the modes of association of the LA neutral molecule to HSA, evidencing specific interactions with protein amino acids and their photophysical consequences. The drug is primarily associated in subdomain IIA where a strong interaction with Trp214 is established. At least two different positions of LA with respect to tryptophan are possible, one with the phenolic ring of the drug facing the aromatic ring of Trp214 and the other with the methoxyphenolic ring of LA in proximity to Trp214. In both cases LA is at ca. 4 angstroms from Trp214. This vicinity does not affect much the S1 singlet state deactivation of the bound drug, which exhibits a slightly higher fluorescence quantum yield and fluorescence lifetime on the order of that of the free molecule. The LA triplet lifetime appears to be somewhat shortened in this site. The secondary binding site is in subdomain IIIA. Here, the carbonyl group of LA experiences a strong H-bond with the OH-phenolic substituent of Tyr411. This interaction reduces substantially the LA molecular degrees of freedom, thereby determining a decrease of both radiative and nonradiative rate constants for decay of the singlet. The overall rigidity of the structure causes a lengthening of the triplet lifetime.  相似文献   

20.
Abstract— Besides the normal tryptophan (Trp) fluorescence in aqueous solution (emission maximum at 350 nm), a new emission, peaking around 380 nm, appears by long wavelength excitation. Its fluorescence yield (φs 0.24) is higher than that of tryptophan (φTrp= 0.13). The growth of this emission is observed under different experimental conditions, mainly under UV anaerobic irradiation. To explain this observation, the formation of a C3-hydroxylated derivative is tentatively suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号