首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The room temperature thermoelectric properties of a three-dimensional array of molecular junctions are calculated. The array is composed of n-doped silicon nanoparticles where the surfaces are partially covered with polar molecules and the nanoparticles are bridged by trans-polyacetylene molecules. The role of the polar molecules is to reduce the band bending in the n-doped silicon nanoparticles and to shift the electronic resonances of the bridging molecules to the nanoparticle conduction band edges where the molecular resonances act as electron energy filters. The transmission coefficients of the bridging molecules that appear in the formulas for the Seebeck coefficient, the electrical conductance, and the electronic thermal conductance, are calculated using the nonequilibrium Green's function technique. A simple tight-binding Hamiltonian is used to describe the bridging molecules, and the self-energy term is calculated using the parabolic conduction band approximation. The dependencies of the thermoelectric properties of the molecular junctions on the silicon doping concentration and on the molecule-nanoparticle coupling are discussed. The maximal achievable thermoelectric figure of merit ZT of the array is estimated as a function of the phononic thermal conductance of the bridging molecules and the doping of the nanoparticles. The power factor of the array is also calculated. For sufficiently small phononic thermal conductances of the bridging molecules, very high ZT values are predicted.  相似文献   

2.
We investigate the effects of lateral interactions on the conductance of two molecules connected in parallel to semi-infinite leads. The method we use combines a Green function approach to quantum transport with density functional theory for the electronic properties. The system, modeled after a self-assembled monolayer, consists of benzylmercaptane molecules sandwiched between gold electrodes. We find that the conductance increases when intermolecular interaction comes into play. The source of this increase is the indirect interaction through the gold substrate rather than direct molecule-molecule interaction. A striking resonance is produced only 0.3 eV above the Fermi energy.  相似文献   

3.
In our previous work, we have shown that the pseudospectral method is an effective and flexible computation scheme for deriving pulses for optimal control of quantum systems. In practice, however, quantum systems often exhibit variation in the parameters that characterize the system dynamics. This leads us to consider the control of an ensemble (or continuum) of quantum systems indexed by the system parameters that show variation. We cast the design of pulses as an optimal ensemble control problem and demonstrate a multidimensional pseudospectral method with several challenging examples of both closed and open quantum systems from nuclear magnetic resonance spectroscopy in liquid. We give particular attention to the ability to derive experimentally viable pulses of minimum energy or duration.  相似文献   

4.
The binding energies and lifetimes of the n=1 image resonance on Au(111) are measured as a function of n-heptane layer thickness by femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy. The lifetime of the image resonance dramatically increases from approximately 4 fs on clean Au(111) to 1.6 ps with three layers of n-heptane. Because the image resonance is above the L1 band edge of Au, this increase in lifetime is attributed to the tunneling barrier presented by the sigma-sigma* band gap of the n-heptane film. We use the one-dimensional dielectric continuum model (DCM) to approximate the surface potential and to determine the binding energies and the lifetimes of the image resonances. The exact solution of the DCM potential is determined in two ways: the first by wave-packet propagation and the second by using a tight-binding Green's function approach. The first approach allows band-edge effects to be treated. The latter approach is particularly useful in illustrating the similarity between TR-2PPE and conductance measurements.  相似文献   

5.
This work establishes a firm relationship between classical nonlinear resonances and the phenomenon of dynamical tunneling. It is shown that the classical phase space with its hierarchy of resonance islands completely characterizes dynamical tunneling and explicit forms of the dynamical barriers can be obtained only by identifying the key resonances. Relationship between the phase space viewpoint and the quantum mechanical superexchange approach is discussed in near-integrable and mixed regular-chaotic situations. For near-integrable systems with sufficient anharmonicity the effect of multiple resonances, i.e., resonance-assisted tunneling, can be incorporated approximately. It is also argued that the presumed relation of avoided crossings to nonlinear resonances does not have to be invoked in order to understand dynamical tunneling. For molecules with low density of states the resonance-assisted mechanism is expected to be dominant.  相似文献   

6.
Quantum control of the lifetime of a system in an excited resonance state is investigated theoretically by creating coherent superpositions of overlapping resonances. This control scheme exploits the quantum interference occurring between the overlapping resonances, which can be controlled by varying the width of the laser pulse that creates the superposition state. The scheme is applied to a realistic model of the Br(2)(B)-Ne predissociation decay dynamics through a three-dimensional wave packet method. It is shown that extensive control of the system lifetime is achievable, both enhancing and damping it remarkably. An experimental realization of the control scheme is suggested.  相似文献   

7.
在单光子29000~40000cm^-1。能量范围内,获得亚稳态4p55s[3/2]2和4p^5s’[1/2]oKr原子向其4p5npr[3/2]1.2,[1/2]1和4p5nfr[5/2]3序列自电离Rydberg态跃迁的共振增强激发光谱,光谱线宽≈0.1cm^-1.这些偶宇称自电离态的激发谱呈现明显的不对称线形,如此高分辨的激发谱大部分是首次报道.根据Fano线形关系对激发谱进行系统地分析,获得许多新的系统的能级位置、量子亏损、线性因子、共振宽度、共振态寿命和衰减宽度等数据,基于实验拟合所得的系统参数,我们发现线形因子和共振宽度相对有效量子数呈线性关系.另外还分析了4p^5np'序列的能级间距.  相似文献   

8.
Optical-optical-optical triple resonance spectroscopy isolates transitions to vibrationless Rydberg states of BH with principal quantum numbers from n=7 to 50. Corresponding resonances appear in the excitation spectrum of excited boron atoms produced by the dissociative relaxation of these states. The decay to neutral products occurs on a nanosecond time scale. Yet, corresponding resonances show Fano coupling widths that approach 1 cm-1. Above threshold, spontaneous ionization dominates, but line shapes match for resonances with the same electron orbital quantum numbers built on v+=0 and v+=1 cores. This striking feature-for-feature similarity in predissociation and autoionization line shapes affirms that inelastic electron-cation scattering pathways leading to electron ejection and dissociative recombination proceed through a common continuum.  相似文献   

9.
The vibrational resonance states of the complexes formed in the nucleophilic bimolecular substitution (S(N)2) reaction Cl(-)+CH(3)Br-->ClCH(3)+Br(-) were calculated by means of the filter diagonalization method employing a coupled-cluster potential-energy surface and a Hamiltonian that incorporates an optical potential and is formulated in Radau coordinates for the carbon-halogen stretching modes. The four-dimensional model also includes the totally symmetric vibrations of the methyl group (C-H stretch and umbrella bend). The vast majority of bound states and many resonance states up to the first overtone of the symmetric stretching vibration in the exit channel complex have been calculated, analyzed, and assigned four quantum numbers. The resonances are classified into entrance channel, exit channel, and delocalized states. The resonance widths fluctuate over six orders of magnitude. In addition to a majority of Feshbach-type resonances there are also exceedingly long-lived shape resonances, which are associated with the entrance channel and can only decay by tunneling. The state-selective decay of the resonances was studied in detail. The linewidths of the resonances, and thus the coupling to the energetic continuum, increase with excitation in any mode. Due to the strong mixing of the many progressions in the intermolecular stretching modes of the intermediate complexes, this increase as a function of the corresponding quantum numbers is not monotonic, but exhibits pronounced fluctuations.  相似文献   

10.
The elastic resonant scattering of He atoms off the Cu(117) surface is fully described with the formalism of quantum trajectories provided by Bohmian mechanics. Within this theory of quantum motion, the concept of trapping is widely studied and discussed. Classically, atoms undergo impulsive collisions with the surface, and then the trapped motion takes place covering at least two consecutive unit cells. However, from a Bohmian viewpoint, atom trajectories can smoothly adjust to the equipotential energy surface profile in a sort of sliding motion; thus the trapping process could eventually occur within one single unit cell. In particular, both threshold and selective adsorption resonances are explained by means of this quantum trapping considering different space and time scales. Furthermore, a mapping between each region of the (initial) incoming plane wave and the different parts of the diffraction and resonance patterns can be easily established, an important issue only provided by a quantum trajectory formalism.  相似文献   

11.
The even-parity autoionizing resonance series 5p5np'[3/2]1, [1/2]1, and 5p5nf'[5/2]3 of xenon have been investigated, excited from the two metastable states 5p56s[3/2]2 and 5p56s'[1/2]0 in the photon energy range of 28000-42000 cm-1 with experimental bandwidth of ~0.1 cm-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile indices and resonance widths, resonance lifetimes and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index and the resonance width are shown to be approximately proportional to the effective principal quantum number. The line separation of the 5p5np' autoionizing resonances is discussed.  相似文献   

12.
We developed a novel method to fabricate nanocomposite monodisperse SiO2 spheres (approximately 100 nm) containing homogeneously dispersed Ag quantum dots (approximately 2 to 5 nm). The inclusion morphology is controlled through the timing of the photochemical reduction of silver ions during hydrolysis of tetraethoxysilane in a microemulsion. Depending on the timing, Ag quantum dots can be directed to different annuli within the SiO2 spheres, as well as onto the SiO2 sphere surfaces. The embedded Ag quantum dots show a plasmon resonance absorption band at 438 nm. These Ag@SiO2 particles have significant surface charge and readily self-assemble into crystalline colloidal array (CCA) photonic crystals which Bragg-diffract light in the visible region. The magnitude of the plasmon resonance absorption depends on the CCA Bragg diffraction condition. The negative dielectric constant of the silver nanoparticles may be decreasing the silica-silver nanodot composite refractive index below that of the water medium. We may be observing an analogue of the Borrmann effect previously observed in X-ray scattering, where the incident and diffracted electric field standing wave becomes localized in regions of small CCA crystal absorption.  相似文献   

13.
We study the enhancement of the quantum decay rate out of a metastable state, via tunneling, in presence of an external sinusoidal force. It is shown that the Floquet picture of quantum mechanics, together with the complex scaling method, provides an adequate methodology to describe the periodically driven decay process in a nonperturbative way. In the limiting cases of extremely slow and fast external forces the numerical results are compared with simple semiclassical estimates. The decay near the fundamental resonance assumes a Lorentzian line shape in agreement with recent experiments on Josephson junctions in the deep quantum regime. For small forces the enhancement grows proportional to the square of the forcing strength and saturates above a threshold value. Additionally our results also exhibit secondary resonances: at higher frequency corresponding roughly to a second harmonic induced by the nonlinear potential shape, and at lower frequency, exactly at the half of the first resonance, revealing a two-photon transition.  相似文献   

14.
We present a method that significantly enhances the robustness of (automated) NMR structure determination by allowing the NOE data corresponding to unassigned NMR resonances to be used directly in the calculations. The unassigned resonances are represented by additional atoms or groups of atoms that have no interaction with the regular protein atoms except through distance restraints. These so-called "proxy" residues can be used to generate NOE-based distance restraints in a similar fashion as for the assigned part of the protein. If sufficient NOE information is available, the restraints are expected to place the proxies at positions close to the correct atoms for the unassigned resonance, which can facilitate subsequent assignment. Convergence can be further improved by supplying additional information about the possible identities of the unassigned resonances. We have implemented this approach in the widely used automated assignment and structure calculation protocols ARIA and CANDID. We find that it significantly increases the robustness of structure calculations with regard to missing assignments and yields structures of higher quality. Our approach is still able to find correctly folded structures with up to 30% randomly missing resonance assignments, and even when only backbone and beta resonances are present! This should be of significant value to NMR-based structural proteomics initiatives.  相似文献   

15.
Understanding the state-resolved dynamics of elementary chemical reactions involving polyatomic molecules, such as the well-known reaction mechanism of nucleophilic bimolecular substitution (SN2), is one of the principal goals in chemistry. In this Review, the progress in the quantum mechanical treatment of SN2 reactions in the gas phase is reviewed. The potential energy profile of this class of reactions is characterized by two relatively deep wells, which correspond to pre- and post-reaction chargedipole complexes. As a consequence, the complex-forming reaction is dominated by Feshbach resonances. Calculations in the energetic continuum constitute a major challenge because the high density of resonance states imposes considerable requirements on the convergence and the energetic resolution of the scattering data. However, the effort is rewarding because new insights into the details of multimode quantum dynamics of elementary chemical reactions can be obtained.  相似文献   

16.
The scattered wave packet formalism developed for a quantum subsystem interacting with reservoirs through open boundaries is utilized to calculate the energy-resolved transmission probability. The total wave function is split into incident and scattered components. Markovian outgoing wave boundary conditions are imposed on the scattered or total wave function by the polynomial method. The wave packet correlation function approach is employed to compute the energy-resolved transmission probability for a one-dimensional potential barrier and a one-dimensional model chemical reaction exhibiting a quantum resonance. Accurate results demonstrate that this formalism can significantly reduce the number of grid points required in a dynamical calculation for the reaction probability.  相似文献   

17.
The interference of resonances and formation of so-called bound states in the continuum were considered for the examples of numerical modeling of two-and three-channel one-dimensional systems. It was shown that intrachannel resonances virtually did not interact either with each other or with resonances formed in the binding of open and closed channels. Conversely, the interference of two resonances each formed in the binding of an open and closed channel resulted in the appearance of bound states in the continuum under certain conditions. The reliability of the complex rotation method for calculating isolated resonances and resonances bound to a complex was demonstrated.  相似文献   

18.
A quantum mechanical formalism capable of describing the scattering, trapping, sticking, and desorption of an atom from a moving corrugated surface is presented. While the instantaneous particle-bath interaction is assumed to be weak, the particle and the bath can exchange energy over long periods of time. We have explored the trapping desorption and trapping-relaxation-sticking of He on Cu(110) and of H on graphite(0001). Higher substrate temperatures generally lead to increased trapping, but a higher desorption rate eventually leads to less, or zero sticking, at long times. In both cases, we observe that trapping in diffraction-mediated selective adsorption resonances can enhance sticking at low incident energies. While trapped in the resonance, the atom can relax toward the ground state of the gas-substrate attractive well. If the binding energy is larger than the amount of energy in the atom's motion parallel to the surface, it remains stuck at long times, at sufficiently low temperatures. We find sticking probabilities on the order of 1% at very low energies for both systems. In the vicinity of a selective adsorption resonance, this sticking can increase by several percent, depending on the size of the corrugation.  相似文献   

19.
A great variety of phenomena encountered in the studies of adsorption systems is, in one way or another, determined by the dynamics and the energetics of electronic transitions in adsorbates. Being intrinsically of a quantum nature, these transitions reflect the properties of the unperturbed species, as well as those of the interactions between the adsorbates and substrates that lead to adsorption. A typical feature of chemisorption systems is the occurrence of adsorbate valence electronic resonances which are degenerate to the substrate valence bands. The presence of a resonance may give rise to changes in the properties of the adsorbate electronic transitions relative to the corresponding gas phase characteristics. These changes should, in turn, manifest themselves in a number of the properties of adsorbates, which can be studied by modern surface sensitive experimental methods. In this article, we first briefly review the characteristics of the adsorbate electronic transitions involving valence resonances. Using this as a prerequisite, we present examples of the physical phenomena and events, such as van der Waals scattering from adsorbates and the measurements of the adsorbate spectra by electronic spectroscopies, which can be interpreted by invoking the effects of fractionally occupied valence resonances on the electronic transitions in chemisorbed species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号