首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the question of renormalization of gauge invariant operators in the gauge theories. Our discussion applies to gauge invariant operators of arbitrary dimensions and tensor structure. We show that the gauge noninvariant (and ghost) operators that mix with a given set of gauge invariant operators form a complete set of local solutions of a functional differential equation. We show that this set of gauge noninvariant operators together with the gauge invariant operators close under renormalization to all orders. We obtain a complete set of local solutions of the differential equation. The form of these solutions has recently been conjectured by Kluberg Stern and Zuber. With the help of our solutions, we show that there exists a basis of operators in which the gauge noninvariant operators “decouple” from the gauge invariant operators to all orders in the sense that eigenvalues corresponding to the eigenstates containing gauge invariant operators can be computed without having to compute the full renormalization metrix. We further discuss the substructure of the renormalization matrix.  相似文献   

2.
We consider chiral fermions interacting minimally with abelian and non-abelian gauge fields. Using a path integral approach and exploring the consequences of a mechanism of symmetry restoration, we show that the gauge anomaly has null expectation value in the vacuum for both cases (abelian and non-abelian). We argue that the same mechanism has no possibility to cancel the chiral anomaly, what eliminates competition between chiral and gauge symmetry at full quantum level. We also show that the insertion of the gauge anomaly in arbitrary gauge invariant correlators gives a null result, which points towards anomaly cancellation in the subspace of physical state vectors.  相似文献   

3.
In this work, we show how a global gauge anomaly of a gauge group H can be computed from a local one of a larger gauge group G ⊃ H. We also show that the number f of generations is tied to the consistency of a gauge theory H with initially a Zf gIobal gauge anomaly. We give some examples of SU(N) models, in different dimensions of spacetime, with three families.  相似文献   

4.
We study the gauge invariant version of a chiral non-Abelian gauge theory. A local bosonic effective action is obtained and the covariant conservation of the gauge current is verified. A Hamiltonian analysis of the model and of its constraints is performed. We show that the constraints are first class and that no anomalous term appears in the commutators of the gauge group generators. The current algebra of the model is obtained and the gauge fixing is analyzed.  相似文献   

5.
We discuss gauge transformations in QED coupled to a charged spinor field, and examine whether we can gauge-transform the entire formulation of the theory from one gauge to another, so that not only the gauge and spinor fields, but also the forms of the operator-valued Hamiltonians are transformed. The discussion includes the covariant gauge, in which the gauge condition and Gauss's law are not primary constraints on operator-valued quantities; it also includes the Coulomb gauge, and the spatial axial gauge, in which the constraints are imposed on operator-valued fields by applying the Dirac-Bergmann procedure. We show how to transform the covariant, Coulomb, and spatial axial gauges to what we call “common form,” in which all particle excitation modes have identical properties. We also show that, once that common form has been reached, QED in different gauges has a common time-evolution operator that defines time-translation for states that represent systems of electrons and photons. By combining gauge transformations with changes of representation from standard to common form, the entire apparatus of a gauge theory can be transformed from one gauge to another.  相似文献   

6.
We discuss a class of lattice gauge theories with fermions that have properties in common with continuum chiral gauge theories. The symmetries we gauge have often been mistaken for chiral symmetries in the literature. We show that in the continuum limit they converge to ordinary vector-like symmetries, but that at strong coupling they behave like chiral symmetries. We find lattice analogs of the technicolor mechanism and of the generation of composite massless fermions in chiral gauge theories.  相似文献   

7.
The problem of maintaining gauge invariance when truncating the two-particle irreducible (2PI) effective action has been studied recently by several authors. Here we give a simple and very general derivation of the gauge dependence identities for the off-shell 2PI effective action. We consider the case where the gauge is fixed by an arbitrary function of the quantum gauge field, subject only to the restriction that the Faddeev-Popov matrix is invertible. We also study the background field gauge. We address the role that these identities play in solving gauge invariance problems associated with physical quantities calculated using a truncated on-shell 2PI effective action.Received: 14 January 2005, Revised: 15 April 2005, Published online: 8 June 2005  相似文献   

8.
We present an exact solution of the anomalous chiral Schwinger model using Fermionic variables. We implement infrared regularization by considering the model on a spatial circleS 1. Quantum effects modify the gauge constraints through the appearance of Schwinger terms in the gauge algebra. We perform a careful analysis of the resulting second class gauge constraints by implementing Dirac's method at the quantum level and obtain the spectrum of the theory. We get a consistent unitary Lorentz invariant theory for particular values of the counterterms. We find that when we regulate the fermionic sector of the model without reference to the gauge fields Lorentz invariance requires that we add both Lorentz variant and gauge variant counterterms.  相似文献   

9.
We discuss the Kirchhoff gauge in classical electrodynamics. In this gauge, the scalar potential satisfies an elliptical equation and the vector potential satisfies a wave equation with a nonlocal source. We find the solutions of both equations and show that, despite of the unphysical character of the scalar potential, the electric and magnetic fields obtained from the scalar and vector potentials are given by their well-known retarded expressions. We note that the Kirchhoff gauge pertains to the class of gauges known as the velocity gauge.  相似文献   

10.
Two different gauge potential methods are engaged to calculate explicitly the spin Hall conductivity in graphene. The graphene Hamiltonian with spin-orbit interaction is expressed in terms of kinematic momenta by introducing a gauge potential. A formulation of the spin Hall conductivity is established by requiring that the time evolution of this kinematic momentum vector vanishes. We then calculated the conductivity employing the Berry gauge fields. We show that both of the gauge fields can be deduced from the pure gauge field arising from the Foldy-Wouthuysen transformations.  相似文献   

11.
We present a model of gauge theory based on the symmetry group G×SU(2) where G is the gravitational gauge group and SU(2) is the internal group of symmetry. We employ the spacetime of four-dimensional Minkowski, endowed with spherical coordinates, and describe the gauge fields by gauge potentials. The corresponding strength field tensors are calculated and the field equations are written. A solution of these equations is obtained for the case that the gauge potentials have a particular form potentials induces a metric of Schwarzschild type on with spherical symmetry. The solution for the gravitational the gravitational gauge group space.  相似文献   

12.
We show that Bose–Einstein condensation of charged scalar fields interacting with a topological gauge field at finite temperature is inhibited except for special values of the topological field. We also show that fermions interacting with this topological gauge field can condense for some values of the gauge field.  相似文献   

13.
We discuss the gauge dependence of the renormalization group parameters in a class of ghost-free non-abelian gauge theories. We show, using the n-dimensional regularization with the “minimal” renormalization procedure, that these parameters are gauge independent.  相似文献   

14.
Girish S Setlur 《Pramana》2004,62(1):101-114
It is shown that gauge theories are most naturally studied via a polar decomposition of the field variable. Gauge transformations may be viewed as those that leave the density invariant but change the phase variable by additive amounts. The path integral approach is used to compute the partition function. When gauge fields are included, the constraint brought about by gauge invariance simply means an appropriate linear combination of the gradients of the phase variable and the gauge field is invariant. No gauge fixing is needed in this approach that is closest to the spirit of the gauge principle. We derive an exact formula for the condensate fraction and in case it is zero, an exact formula for the anomalous exponent. We also derive a formula for the vortex strength which involves computing radiation corrections.  相似文献   

15.
We determine the gauge invariance classes of tree level Feynman diagrams in spontaneously broken gauge theories, providing a proof for the formalism of gauge and flavor flips. We find new gauge invariance classes in theories with a nonlinearly realized scalar sector. In unitarity gauge, the same gauge invariance classes correspond to a decomposition of the scattering amplitude into pieces that satisfy the relevant Ward identities individually. In theories with a linearly realized scalar sector in gauge, no additional non-trivial gauge invariance classes exist compared to the unbroken case.Received: 2 June 2003, Revised: 21 July 2003, Published online: 5 September 2003  相似文献   

16.
《Physics letters. [Part B]》1999,463(1):104-108
We study the possible connection between centre vortices and P-vortices in SU(2) gauge theory. After briefly recalling some essential properties of centre vortices we point out that there is no known a priori connection between the gauge dependent P-vortices and the gauge invariant centre vortices. We then show by Monte Carlo simulations that the `centre projected physics' strongly depends on the gauge copy from which the maximal centre gauge fixing is started. This reveals the presence of Gribov problems, and casts some doubts on the physical meaning of P-vortices, and should be further investigated.  相似文献   

17.
18.
We clarify a strong link between general nonlinear Fokker-Planck equations with gauge fields associated with nonequilibrium dynamics and the Fisher information of the system. The notion of Abelian gauge theory for the non-equilibrium Fokker-Planck equation has proposed in the literature, in which the associated curvature represents internal geometry. We present the fluctuation of the gauge field can be decomposed into three parts. We further show that if we define the Fisher information matrix by using a covariant derivative then it gives correlation of the flux components but it is not gauge invariant.  相似文献   

19.
We address in a recent gauge model of unparticles the issues that are important for consistency of a gauge theory, i.e., unitarity and the Ward identity of the physical amplitudes. We find that non-integrable singularities arise in physical quantities like the cross section and the decay rate from the gauge interactions of unparticles. We also show that the Ward identity is violated due to the lack of a dispersion relation for charged unparticles although the Ward–Takahashi identity for general Green functions is incorporated in the model. A previous observation that the contribution of the unparticle (with scaling dimension d) to the gauge boson self-energy is a factor (2−d) of the particle’s self-energy has been extended to the Green function of triple gauge bosons. This (2−d) rule may be generally true for Green functions for any number of points of the gauge bosons. This implies that the model would be trivial even as one that mimics certain dynamical effects on gauge bosons in which unparticles serve as an interpolating field.  相似文献   

20.
《Nuclear Physics B》1988,307(3):633-648
We examine the renormalisation of gauge coupling constants in theories with a G × U(1)N gauge group (which appears to be the gauge symmetry of many possible superstring vacua). In general, the abelian gauge bosons mix among themselves, so a correct renormalisation requires including this mixing in the evolution of the gauge couplings. We present general results and note that the mixing is scale independent to all orders if the renormalization group trajectory passes through a unification point. We discuss the cases of one loop and two loops explicitly. An example, based on a possible superstring-inspired model, is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号