首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of well‐defined amphiphilic diblock copolymers consisting of hydrophobic polyisobutylene (PIB) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments was synthesized via the combination of living carbocationic polymerization and reversible addition fragmentation chain transfer (RAFT) polymerization. Living carbocationic polymerization of isobutylene followed by end‐capping with 1,3‐butadiene was first performed at ?70 °C to give a well‐defined allyl‐Cl‐terminated PIB with a low polydispersity (Mw/Mn =1.29). This end‐functionalized PIB was further converted to a macromolecular chain transfer agent for mediating RAFT block copolymerization of 2‐(diethylamino)ethyl methacrylate at 60 °C in tetrahydrofuran to afford the target well‐defined PIB‐b‐PDEAEMA diblock copolymers with narrow molecular weight distributions (Mw/Mn ≤1.22). The self‐assembly behavior of these amphiphilic diblock copolymers in aqueous media was investigated by fluorescence spectroscopy and transmission electron microscope, and furthermore, their pH‐responsive behavior was studied by UV‐vis and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1478–1486  相似文献   

2.
A series of fluorine‐containing amphiphilic diblock copolymers comprising hydrophobic poly(p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate) (PTPFCBPMA) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments were synthesized via successive reversible addition fragmentation chain transfer (RAFT) polymerizations. RAFT homopolymerization of p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate was first initiated by 2,2′‐azobisisobutyronitrile using cumyl dithiobenzoate as chain transfer agent, and the results show that the procedure was conducted in a controlled way as confirmed by the fact that the number‐average molecular weights increased linearly with the conversions of the monomer while the polydispersity indices kept below 1.30. Dithiobenzoate‐capped PTPFCHPMA homopolymer was then used as macro‐RAFT agent to mediate RAFT polymerization of 2‐(diethylamino)ethyl methacrylate, which afforded PTPFCBPMA‐b‐PDEAEMA amphiphilic diblock copolymers with different block lengths and narrow molecular weight distributions (Mw/Mn ≤ 1.28). The critical micelle concentrations of the obtained amphiphilic diblock copolymers were determined by fluorescence spectroscopy technique using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of the formed micelles were investigated by transmission electron microscopy and dynamic light scattering, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Well‐defined amphiphilic polymethylene‐b‐poly (acrylicacid) diblock copolymers have been synthesized via a new strategy combining polyhomologation and atom transfer radical polymerization (ATRP). Hydroxyl‐terminated polymethylenes (PM‐OH) with different molecular weights and narrow molecular weight distribution are obtained through the polyhomologation of dimethylsulfoxonium methylides following quantitative oxidation via trimethylamine‐N‐oxide dihydrate. Subsequently, polymethylene‐based macroinitiators (PM‐MIs Mn = 1,300 g mol?1 [Mw/Mn = 1.11] and Mn = 3,300 g mol?1 [Mw/Mn = 1.04]) are synthesized by transformation of terminal hydroxyl group of PM‐OH to α‐haloester in ~100% conversion. ATRPs of tert‐butyl acrylate (t‐BuA) are then carried out using PM‐MIs as initiator to construct PM‐b‐P(t‐BuA) diblock copolymers with controllable molecular weight (Mn = 8,800–15,800 g mol?1 Mw/Mn = 1.04–1.09) and different weight ratio of PM/P(t‐BuA) segment (1:1.7–1:11.2). The amphiphilic PM‐b‐PAA diblock copolymers are finally prepared by hydrolysis of PM‐b‐P(t‐BuA) copolymers and their self‐assembly behavior in water is preliminarily investigated via the determination of critical micelle concentrations, dynamic light scattering, and transmission electron microscope (TEM). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Well‐defined polymethylene‐block‐polystyrene (PM‐b‐PS) diblock copolymers were synthesized via a combination of polyhomologation of ylides and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization of styrene. Trithiocarbonate‐terminated polymethylenes (PM‐TTCB) (Mn = 1400 g mol?1; Mw/Mn = 1.09 and Mn = 2100 g mol?1; Mw/Mn = 1.20) were obtained via an esterification of S?1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetate) trithiocarbonate with hydroxyl‐terminated polymethylene synthesized via polyhomologation of ylides followed by oxidation. Then, a series of PM‐b‐PS (Mn = 5500–34,000 g mol?1; Mw/Mn = 1.12–1.25) diblock copolymers were obtained by RAFT polymerization of styrene using PM‐TTCB as a macromolecular chain‐transfer agent. The chain structures of all the polymers were characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography, and Fourier transform infrared spectroscopy. The thiocarbonylthio end‐group of PM‐b‐PS was transformed into thiol group by aminolysis and confirmed by UV–vis spectroscopy. In addition, microfibers and microspheres of such diblock copolymers were fabricated by electrospinning process and observed by scanning electron microscopy (SEM). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2892–2899  相似文献   

5.
Thermo‐responsive block copolymers based on poly(N‐vinylcaprolactam) (PNVCL) have been prepared by cobalt‐mediated radical polymerization (CMRP) for the first time. The homopolymerization of NVCL was controlled by bis(acetylacetonato)cobalt(II) and a molecular weight as high as 46,000 g/mol could be reached with a low polydispersity. The polymerization of NVCL was also initiated from a poly(vinyl acetate)‐Co(acac)2 (PVAc‐Co(acac)2) macroinitiator to yield well‐defined PVAc‐b‐PNVCL block copolymers with a low polydispersity (Mw/Mn = 1.1) up to high molecular weights (Mn = 87,000 g/mol), which constitutes a significant improvement over other techniques. The amphiphilic PVAc‐b‐PNVCL copolymers were hydrolyzed into unprecedented double hydrophilic poly(vinyl alcohol)‐b‐PNVCL (PVOH‐b‐PNVCL) copolymers and their temperature‐dependent solution behavior was studied by turbidimetry and dynamic light scattering. Finally, the so‐called cobalt‐mediated radical coupling (CMRC) reaction was implemented to PVAc‐b‐PNVCL‐Co(acac)2 precursors to yield novel PVAc‐b‐PNVCL‐b‐PVAc symmetrical triblock copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
A novel amphiphilic A3B miktoarm star copolymer poly(N‐isopropylacrylamide)3‐poly(N‐vinylcarbazole) ((PNIPAAM)3(PVK)) was successfully synthesized by a combination of single‐electron transfer living radical polymerization (SET‐LRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization. First, the well‐defined three‐armed poly(N‐isopropylacrylamide) (PNIPAAM)3 was prepared via SET‐LRP of N‐isopropylacrylamide in acetone at 25 °C using a tetrafunctional bromoxanthate iniferter (Xanthate‐Br3) as the initiator and Cu(0)/PMDETA as a catalyst system. Secondly, the target amphiphilic A3B miktoarm star copolymer ((PNIPAAM)3(PVK)) was prepared via RAFT polymerization of N‐vinylcarbazole (NVC) employing (PNIPAAM)3 as the macro‐RAFT agent. The architecture of the amphiphilic A3B miktoarm star copolymers were characterized by GPC, 1H‐NMR spectra. Furthermore, the fluorescence intensity of micelle increased with the temperature and had a good temperature reversibility, which was investigated by dynamic light scattering (DLS), fluorescent and UV‐vis spectra. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4268–4278, 2010  相似文献   

7.
The well‐defined azobenzene‐containing homopolymers, poly{6‐(4‐phenylazophenoxy)hexyl methacrylate (AHMA)} (PAHMA), were synthesized via reversible addition fragmentation chain transfer polymerization (RAFT) in anisole solution using 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as the RAFT agent and 2,2′‐azobisisobutyronitrile (AIBN) as the initiator. The first‐order kinetic plot of the polymerization and the linear dependence of molecular weights of the homopolymers with the relatively low polydispersity index values (PDIs ≤ 1.25) on the monomer conversions were observed. Furthermore, the amphiphilic diblock copolymer, poly{6‐(4‐phenylazophenoxy)hexyl methacrylate (AHMA)}‐b‐poly{2‐(dimethylamino)ethyl methacrylate (DMAEMA)} (PAHMA‐b‐PDMAEMA), was prepared with the obtained PAHMA as the macro‐RAFT agent. The structures and properties of the polymers were characterized by 1H NMR and GPC, respectively. Interestingly, the amphiphilic diblock copolymers in chloroform (CHCl3) solution (PAHMA23b‐PDMAEMA97 (4 × 10?5 M, Mn(GPC) = 18,400 g/mol, PDI = 1.48) and PAHMA28b‐PDMAEMA117 (6 × 10?5 M, Mn(GPC) = 19,300 g/mol, PDI = 1.51) exhibited the intense fluorescence emission at ambient temperature. Moreover, the fluorescent intensity of PAHMA‐b‐PDMAEMA in CHCl3 was sensitive to the ultraviolet irradiation at 365 nm, which increased within the first 10 min and later decreased when irradiation time was prolonged to 30 min or longer. The well distributed, self‐assembled micelles composed of azobenzene‐containing amphiphilic diblock copolymers, (PAHMA‐b‐QPDMAEMA)s (QPDMAEMA is quaternized PDMAEMA), in the mixed N,N‐dimethyl formamide (DMF)/H2O solutions were prepared. Their fluorescent intensities decreased with the increasing amount of water. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5652–5662, 2008  相似文献   

8.
The design and synthesis of well‐defined polymethylene‐b‐polystyrene (PM‐b‐PS, Mn = 1.3 × 104–3.0 × 104 g/mol; Mw/Mn (GPC) = 1.08–1.18) diblock copolymers by the combination of living polymerization of ylides and atom transfer radical polymerization (ATRP) was successfully achieved. The 1H NMR spectrum and GPC traces of PM‐b‐PS indicated the successful extension of PS segment on the PM macroinitiator. The micellization behavior of such diblock copolymers in tetrahydrofuran were characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) techniques. The average aggregate sizes of PM‐b‐PS diblock copolymers with the same length of PM segment in tetrahydrofuran solution (1.0 mg mL?1) increases from 104.2 nm to 167.7 nm when the molecular weight of PS segment increases. The spherical precipitated aggregates of PM‐b‐PS diblock copolymers with an average diameter of 600 nm were observed by AFM. Honeycomb porous films with the average diameter of 3.0 μm and 6.0 μm, respectively, were successfully fabricated using the solution of PM‐b‐PS diblock copolymers in carbon disulfide via the breath‐figure (BF) method under a static humid condition. The cross‐sections of low density polyethylene (LDPE)/polystyrene (PS)/PM‐b‐PS and LDPE/polycarbonate (PC)/PM‐b‐PS blends were observed by scanning electron microscope and reveal that the PM‐b‐PS diblock copolymers are effective compatilizers for LDPE/PS and LDPE/PC blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1894–1900, 2010  相似文献   

9.
Herein the first reported preparation of diblock copolymers of the polyethylene‐like polyester poly(ω‐pentadecalactone) (PPDL) via a combination of enzymatic ring‐opening polymerization (eROP) and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization techniques is described. PPDL was synthesized via eROP using Novozyme 435 as a catalyst and a bifunctional initiator/chain transfer agent (CTA) appropriate for the eROP of ω‐pentadecalactone (PDL) and RAFT polymerization of acrylic and styrenic monomers. Chain growth of the PPDL macro‐CTA was performed to prepare acrylic and styrenic diblock copolymers of PPDL, and demonstrates a facile, metal‐free, and “greener” alternative to preparing acrylic diblock copolymers of polyethylene (PE). Diblock copolymer architecture was substantiated via analysis of 1H NMR spectroscopic, UV‐GPC chromatographic, DSC onset crystallization (Tc), and MALDI‐ToF mass spectrometric data. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3326–3335  相似文献   

10.
Four well‐defined diblock copolymers and one statistical copolymer based on lauryl methacrylate (LauMA) and 2‐(acetoacetoxy)ethyl methacrylate (AEMA) were prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization. The polymers were characterized in terms of molecular weights, polydispersity indices (ranging between 1.12 and 1.23) and compositions by size exclusion chromatography and 1H NMR spectroscopy, respectively. The preparation of the block copolymers was accomplished following a two‐step methodology: First, well‐defined LauMA homopolymers were prepared by RAFT using cumyl dithiobenzoate as the chain transfer agent (CTA). Kinetic studies revealed that the polymerization of LauMA followed first‐order kinetics demonstrating the “livingness” of the RAFT process. The pLauMAs were subsequently used as macro‐CTA for the polymerization of AEMA. The glass transition (Tg) and decomposition temperatures (ranging between 200 and 300 °C) of the copolymers were determined using differential scanning calorimetry and thermal gravimetric analysis, respectively. The Tgs of the LauMA homopolymers were found to be around ?53 °C. Block copolymers exhibited two Tgs suggesting microphase separation in the bulk whereas the statistical copolymer presented a single Tg as expected. Furthermore, the micellization behavior of pLauMA‐b‐pAEMA block copolymers was investigated in n‐hexane, a selective solvent for the LauMA block, using dynamic light scattering. pLauMA‐b‐pAEMA block copolymers formed spherical micelles in dilute hexane solutions with hydrodynamic diameters ranging between 30 and 50 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5442–5451, 2008  相似文献   

11.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization is a more robust and versatile approach than other living free radical polymerization methods, providing a reactive thiocarbonylthio end group. A series of well‐defined star diblock [poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)]4 (SPCLNIP) copolymers were synthesized by R‐RAFT polymerization of N‐isopropylacrylamide (NIPAAm) using [PCL‐DDAT]4 (SPCL‐DDAT) as a star macro‐RAFT agent (DDAT: S‐1‐dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate). The R‐RAFT polymerization showed a controlled/“living” character, proceeding with pseudo‐first‐order kinetics. All these star polymers with different molecular weights exhibited narrow molecular weight distributions of less than 1.2. The effect of polymerization temperature and molecular weight of the star macro‐RAFT agent on the polymerization kinetics of NIPAAm monomers was also addressed. Hardly any radical–radical coupling by‐products were detected, while linear side products were kept to a minimum by careful control over polymerization conditions. The trithiocarbonate groups were transferred to polymer chain ends by R‐RAFT polymerization, providing potential possibility of further modification by thiocarbonylthio chemistry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Well‐defined amphiphilic polymethylene‐b‐poly(ε‐caprolactone)‐b‐poly(acrylic acid) (PM‐b‐PCL‐b‐PAA) triblock copolymers were synthesized via a combination of polyhomologation, ring‐opening polymerization (ROP), and atom transfer radical polymerization (ATRP). First, hydroxyl‐terminated polymethylenes (PM‐OH; Mn = 1100 g mol?1; Mw/Mn = 1.09) were produced by polyhomologation followed by oxidation. Then, the PM‐b‐PCL (Mn = 10,000 g mol?1; Mw/Mn = 1.27) diblock copolymers were synthesized via ROP of ε‐caprolactone using PM‐OH as macroinitiator and stannous octanoate (Sn(Oct)2) as a catalyst. Subsequently, the macroinitiator transformed from PM‐b‐PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBA) to construct PM‐b‐PCL‐b‐PtBA triblock copolymers (Mn = 11,000–14,000 g mol?1; Mw/Mn = 1.24–1.26). Finally, the PM‐b‐PCL‐b‐PAA triblock copolymers were obtained via the hydrolysis of the PtBA segment in PM‐b‐PCL‐b‐PtBA triblock copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Porous films of such triblock copolymers were fabricated by static breath‐figure method and observed by scanning electron microscope. The aggregates of PM‐b‐PCL‐b‐PAA triblock copolymer were studied by transmission electron microscope. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A series of well‐defined amphiphilic graft copolymers containing hydrophilic poly(acrylic acid) (PAA) backbone and hydrophobic poly(vinyl acetate) (PVAc) side chains were synthesized via sequential reversible addition‐fragmentation chain transfer (RAFT) polymerization followed by selective hydrolysis of poly(tert‐butyl acrylate) backbone. A new Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromopropanoyloxy)methyl) acrylate, was first prepared, which can be polymerized via RAFT in a controlled way to obtain a well‐defined homopolymer with narrow molecular weight distribution (Mw/Mn = 1.08). This homopolymer was transformed into xanthate‐functionalized macromolecular chain transfer agent by reacting with o‐ethyl xanthic acid potassium salt. Grafting‐from strategy was employed to synthesize PtBA‐g‐PVAc well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.40) via RAFT of vinyl acetate using macromolecular chain transfer agent. The final PAA‐g‐PVAc amphiphilic graft copolymers were obtained by selective acidic hydrolysis of PtBA backbone in acidic environment without affecting the side chains. The critical micelle concentrations in aqueous media were determined by fluorescence probe technique. The micelle morphologies were found to be spheres. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6032–6043, 2009  相似文献   

14.
The well‐defined azoindazole‐containing homopolymer, poly(6‐{6‐[(4‐dimethylamino) phenylazo]‐indazole}‐hexyl methacrylate) (PDHMA), and amphiphilic diblock copolymer, poly({6‐[6‐(4‐dimethylamino)phenylazo]‐indazole}‐hexyl methacrylate)‐b‐poly(2‐(dimethylamino)ethylmethacrylate) (PDHMAmb‐PDMAEMAn), were successfully prepared via reversible addition‐fragmentation chain transfer polymerization technique. The homopolymer and amphiphilic diblock copolymer in CH2Cl2 exhibited intense fluorescence emission accompanied by trans–cis photoisomerization of azoindazole group under UV irradiation. The experiment results indicated that the intense fluorescence emission may be attributed to an inhibition of photoinduced electron transfer of the cis form of azoindazole. On the other hand, the intense fluorescence emission of amphiphilic diblock copolymers in water‐tetrahydrofuran mixture was observed, which increased with the volume ratio of water in the mixed solvent. The self‐aggregation behaviors of three amphiphilic diblock copolymers were examined by transmission electron microscopy, laser light scattering, and UV–vis spectra. The restriction of intramolecular rotation of the azoindazole groups in aggregates was considered as the main cause of aggregation‐induced fluorescence emission. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

15.
We report here the synthesis of well‐defined homopolymer bearing amino acid diamide, poly(N‐acryloyl‐L ‐valine N′‐methylamide), via reversible addition fragmentation chain transfer (RAFT) polymerization using alkynyl‐functionalized 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methyl‐propionic acid propargyl alcohol ester as chain transfer agent (CTA) and 2,2′‐azobis(isobutyronitrile) as initiator. The effects of a variety of parameters, such as temperature and solvent, on RAFT polymerization were examined to determine the optimal control of the polymerization. The controlled nature of RAFT polymerization was evidenced by the controllable molecular weight and low‐molecular‐weight polydispersity index (Mw/Mn) of resulting homopolymers and further demonstrated to have retained end‐group functionality by the fact of the successful formation of block copolymers from further RAFT polymerization by using the resultant polymer as macro‐CTA, as well as from “click” chemistry. Thermoresponsive property of the prepared polymer was evaluated in terms of the lower critical solution temperature in aqueous solution by measuring the transmittance variation at 500 nm from UV/vis spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3573–3586, 2010  相似文献   

16.
Well‐defined macromolecular brushes with poly(N‐isopropyl acrylamide) (PNIPAM) side chains on random copolymer backbones were synthesized by “grafting from” approach based on click chemistry and reversible addition‐fragmentation chain transfer (RAFT) polymerization. To prepare macromolecular brushes, two linear random copolymers of 2‐(trimethylsilyloxy)ethyl methacrylate (HEMA‐TMS) and methyl methacrylate (MMA) (poly(MMA‐co‐HEMA‐TMS)) were synthesized by atom transfer radical polymerization and were subsequently derivated to azide‐containing polymers. Novel alkyne‐terminated RAFT chain transfer agent (CTA) was grafted to polymer backbones by copper‐catalyzed 1,3‐dipolar cycloaddition (azide‐alkyne click chemistry), and macro‐RAFT CTAs were obtained. PNIPAM side chains were prepared by RAFT polymerization. The macromolecular brushes have well‐defined structures, controlled molecular weights, and molecular weight distributions (Mw/Mn ≦ 1.23). The RAFT polymerization of NIPAM exhibited pseudo‐first‐order kinetics and a linear molecular weight dependence on monomer conversion, and no detectable termination was observed in the polymerization. The macromolecular brushes can self‐assemble into micelles in aqueous solution. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 443–453, 2010  相似文献   

17.
Triblock copolymers of poly(styrenesulfonate)‐b‐poly(ethylene glycol)‐b‐poly(styrenesulfonate) with narrow molecular weight distribution (Mw/Mn = 1.28–1.40) and well‐defined structure have been synthesized in aqueous solution at 70 °C via reversible addition‐fragmentation chain transfer polymerization. Poly(ethylene glycol) (PEG) capped with 4‐cyanopentanoic acid dithiobenzoate end groups was used as the macro chain transfer agent (PEG macro‐CTA) for sole monomer sodium 4‐styrenesulfonate. The reaction was controllable and displayed living polymerization characteristics and the triblock copolymer had designed molecular weight. The reaction rate depended strongly on the CTA and initiator concentration ratio [CTA]0/[ACPA]0: an increase in [CTA]0/[ACPA]0 from 1.0 to 5.0 slowed down the polymerization rate and improved the molecular weight distribution with a prolonged induction time. The polymerization proceeded, following first‐order kinetics when [CTA]0/[ACPA]0 = 2.5 and 5.0. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3698–3706, 2007  相似文献   

18.
A series of well‐defined amphiphilic graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly[poly(ethylene glycol) methyl ether methacrylate)] (PPEGMEMA) side chains were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single‐electron‐transfer living radical polymerization (SET‐LRP) without any polymeric functional group transformation. A new Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromoisobutanoyloxy)methyl)acrylate (tBBIBMA), was first prepared, which can be homopolymerized by RAFT to give a well‐defined PtBBIBMA homopolymer with a narrow molecular weight distribution (Mw/Mn = 1.15). This homopolymer with pendant Br initiation group in every repeating unit initiated SET‐LRP of PEGMEMA at 45 °C using CuBr/dHbpy as catalytic system to afford well‐defined PtBBIBMA‐g‐PPEGMEMA graft copolymers via the grafting‐from strategy. The self‐assembly behavior of the obtained graft copolymers in aqueous media was investigated by fluorescence spectroscopy and TEM. These copolymers were found to be stimuli‐responsive to both temperature and ions. Finally, poly(acrylic acid)‐g‐PPEGMEMA double hydrophilic graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PPEGMEMA side chains kept inert. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Well‐defined homopolymers of pentafluorophenyl acrylate (PFPA) and AB diblock copolymers of N,N‐dimethylacrylamide (DMA) and poly(ethylene glycol) methyl ether acrylate (PEGA) with PFPA were prepared by reversible addition–fragmentation chain transfer (RAFT) radical polymerization. Three PFPA homopolymers of different molecular weights were reacted with the commercially available amidine and guanidine species histamine (HIS) dihydrochloride and L ‐arginine methyl ester (ARG) dihydrochloride in the presence of S‐methyl methanethiosulfonate to yield, quantitatively, the corresponding amidine and guanidine‐based acrylamido homopolymers. Both the HIS and ARG homopolymers are known to reversibly bind CO2 with, in the case of the former, CO2 fixation being accompanied with a switch from a hydrophobic to hydrophilic state. The RAFT synthesis of PFPA‐DMA and PEGA‐PFPA diblock copolymers yielded well‐defined materials with a range of molar compositions. These precursor materials were converted to the corresponding HIS and ARG block copolymers whose structure was confirmed using 1H NMR spectroscopy. Employing a combination of dynamic light scattering and transmission electron microscopy, we demonstrate that the DMA‐HIS and PEGA‐HIS diblock copolymers are able to undergo reversible and cyclable self‐directed assembly in aqueous media using CO2 and N2 as the triggers between fully hydrophilic and amphiphilic (assembled) states. For example, in the case of the 54:46 DMA‐HIS diblock, aggregates with hydrodynamic diameters of about 40.0 nm are readily formed from the molecularly dissolved state. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
Well‐defined amphiphilic block copolymers, poly(styrene)‐b‐poly(N‐vinylimidazole) (PS‐b‐PVim), were successfully synthesized by macromolecular design via interchange of the xanthates/reversible addition–fragmentation chain transfer (RAFT) polymerization. The structure of the copolymer based on Vim can be well controlled, and the molecular weight distribution was relatively narrow (PDI = 1.24). The size and morphology of the aggregates of the amphiphilic copolymers were investigated by dynamic light scattering and transmission electron microscope, the results implied that the uniform spheroidal micelles consisting of PS core and PVim corona were assembled, and the catalytic activities of PS‐b‐PVim for the hydrolysis of p‐nitrophenyl acetate at different temperatures were also investigated by high‐performance liquid chromatograph (HPLC); the catalytic activities of diblock copolymers were prominently improved compared with that of PVim homopolymers. Moreover, the catalytic activities of the copolymers followed the Arrhenius behavior in the wide experimental temperature range. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号