首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Anionic and reversible addition–fragmentation chain transfer (RAFT) polymerizations were combined for the preparation of high molecular weight (MW) amphiphilic diblock copolymers based on the hydrophobic styrene (Sty) and the more polar 2‐vinyl pyridine (2VPy) or 4‐vinyl pyridine (4VPy). In particular, four amphiphilic Sty‐VPy diblock copolymers with MWs up to 271,000 g mol–1 were prepared. For the polymer synthesis, first, living anionic polymerization of Sty using sec‐butyl‐lithium as initiator in tetrahydrofuran at ?70 °C, followed by termination with ethylene oxide were employed for the preparation of OH‐functionalized homopolyStys. Subsequently, a modification of the OH‐terminal group was performed by the attachment of a 4‐cyanopentanoic acid dithiobenzoate chain transfer agent (CTA) group, giving a polySty macroRAFT CTA, which was extended with 2VPy or 4VPy units using RAFT polymerization. Thus, the prepared diblock copolymers comprised a first block which was near‐monodisperse in size, and a second more heterogeneous block. All diblock copolymers were characterized in terms of their MWs and compositions by gel permeation chromatography and 1H NMR spectroscopy, respectively, giving results close to the theoretically expected values. Films cast from chloroform solutions of the diblock copolymers were investigated in terms of their bulk morphologies using transmission electron microscopy, which indicated that the minority block consistently formed the discontinuous microphase, spherical or cylindrical. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
High‐molecular‐weight (MW) symmetrical multiblock copolymers, based on the hydrophobic monomers styrene (Sty) and methyl methacrylate (MMA), and the more polar monomer, 2‐vinyl pyridine (2VPy), were prepared using stepwise reversible addition‐fragmentation chain transfer polymerization. All copolymers shared a common poly(ethylene glycol) (PEG) midblock, introduced as a bifunctional macromolecular chain transfer agent. In total, five ABA triblock copolymers, five ABCBA pentablock terpolymers, and two ABCDCBA heptablock quaterpolymers (comprising four different monomer types) were synthesized. The MWs of the multiblock polymers were determined using gel permeation chromatography (GPC) and proton nuclear magnetic resonance (1H NMR) spectroscopy, with the latter values being closer to the theoretically expected, whereas GPC MW distributions were relatively narrow, broadening with the number of blocks. The compositions of the synthesized polymers, as determined by 1H NMR spectroscopy, were also close to the expected values. Finally, films cast from chloroform solutions of the pentablock terpolymers P2VPy‐b‐PSty‐b‐PEG‐b‐PSty‐b‐P2VPy, PSty‐b‐PMMA‐b‐PEG‐b‐PMMA‐b‐PSty, and P2VPy‐b‐PMMA‐b‐PEG‐b‐PMMA‐b‐P2VPy examined using transmission electron microscopy exhibited PSty and PMMA cylinders (first two) and lamellae (third terpolymer). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4957–4965  相似文献   

3.
We have successfully synthesized a series of redox‐degradable hyperbranched polyglycerols using a disulfide containing monomer, 2‐((2‐(oxiran‐2‐ylmethoxy)ethyl)disulfanyl) ethan‐1‐ol (SSG), to yield PSSG homopolymers and hyperbranched block copolymers, P(G‐b‐SSG) and P(SSG‐b‐G), containing nondegradable glycerol (G) monomers. Using these polymers, we have explored the structures of the hyperbranched block copolymers and their related degradation products. Furthermore, side reaction such as reduction of disulfide bond during the polymerization was investigated by employing the free thiol titration experiments. We elucidated the structures of the degradation products with respect to the architecture of the hyperbranched block copolymer under redox conditions using 1H NMR and GPC measurements. For example, the degradation products of P(G‐b‐SSG) and P(SSG‐b‐G) are clearly different, demonstrating the clear distinction between linear and hyperbranched block copolymers. We anticipate that this study will extend the structural diversity of PG based polymers and aid the understanding of the structures of degradable hyperbranched PG systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1752–1761  相似文献   

4.
The synthesis of a monoacrylate functionalized poly(isobutylene) (PIB) macromonomer (PIBA) has been achieved by a two‐step reaction starting from a commercially available PIB. Firstly, terminal olefins (vinylidene and trisubstituted olefin) of PIB were transformed to a phenolic residue by Friedel‐Crafts alkylation followed by subsequent esterification of the phenol with acryloyl chloride, catalyzed by triethylamine. PIBA structure was confirmed by 1H‐NMR, 13C‐NMR and GPC before utilizing in the RAFT copolymerization with N,N‐dimethylacrylamide (DMA) to obtain statistical copolymers (P[(DMA‐co‐(PIBA)]). Monomer conversions were consistently higher than 85% for both DMA and PIBA as monomer feed composition was varied. Chain extension of poly(N,N‐dimethylacrylamide) with PIBA to synthesize block copolymers (P[(DMA‐b‐(PIBA)]) was also achieved with near quantitative monomer conversions (>97%). Block formation efficiency was not quantitative but purification of block copolymers was possible by selective precipitation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 634–643  相似文献   

5.
The synthesis of polyvalent functionalized polyisobutylene (PIB) oligomers containing multiple polar groups via radical polymerization is described. Polymerizations from PIB macroinitiators via alkylborane intermediates can form block copolymers but the polar block is consistently larger than the PIB block and unless a hydrophobic monomer is used, the products are insoluble in alkanes. Block copolymer products from ATRP macroinitiators are formed with more control over the degree of polymerization of a polar block from a 1000 Da PIB starting material but are still alkane insoluble because the degree of polymerization of the polar block was consistently equal to or greater than the degree of polymerization of the PIB block. RAFT polymerization using 5 mol % of azoisobutyronitrile relative to a PIB macroinitiator however was successful in producing acceptable yields of alkane soluble block copolymers using a 1000 Da PIB starting material and monomers like methyl methacrylacrylate, ethyl methacrylate, N,N‐dimethylacrylamide, and N‐isopropylacrylamide. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1860–1867  相似文献   

6.
Arborescent copolymers with a core‐shell‐corona (CSC) architecture, incorporating a polystyrene (PS) core, an inner shell of poly(2‐vinylpyridine), P2VP, and a corona of PS chains, were obtained by anionic polymerization and grafting. Living PS‐b‐P2VP‐Li block copolymers serving as side chains were obtained by capping polystyryllithium with 1,1‐diphenylethylene before adding 2‐vinylpyridine. A linear or arborescent (generation G0 – G3) PS substrate, randomly functionalized with acetyl or chloromethyl coupling sites, was then added to the PS‐b‐P2VP‐Li solution for the grafting reaction. The grafting yield and the coupling efficiency observed in the synthesis of the arborescent PS‐g‐(P2VP‐b‐PS) copolymers were much lower than for analogous coupling reactions previously used to synthesize arborescent PS homopolymers and PS‐g‐P2VP copolymers from the same types of coupling sites. It was determined from static and dynamic light scattering analysis that PS‐b‐P2VP formed aggregates in THF, the solvent used for the synthesis. This presumably hindered coupling of the macroanions with the substrate, and explains the low grafting yield and coupling efficiency observed in these reactions. Purification of the crude products was also problematic due to the amphipolar character of the CSC copolymers and the block copolymer contaminant. A new fractionation method by cloud‐point centrifugation was developed to purify copolymers of generations G1 and above. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1075–1085  相似文献   

7.
Block copolymers of poly(glycidol)‐b‐poly(4‐vinylpyridine) were obtained by ATRP of 4‐vinylpyridine initiated by ω‐(2‐chloropropionyl) poly(glycidol) macroinitiators. By changing the monomer/macroinitiator ratio in the synthesis polymers with varied P4VP/PGl molar ratio were obtained. The obtained block copolymers showed pH sensitive solubility. It was found that the linkage of a hydrophilic poly(glycidol) block to a P4VP influenced the pKa value of P4VP. DLS measurements showed the formation of fully collapsed aggregates exceeding pH 4.7. Above this pH values the collapsed P4VP core of the aggregates was stabilized by a surrounding hydrophilic poly(glycidol) corona. The size of the aggregates depended significantly upon the composition of the block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1782–1794, 2009  相似文献   

8.
“Block‐random” copolymers—where one or more blocks are themselves random copolymers—offer a flexible modification to the usual block copolymer architecture. For example, in a poly(A)‐poly(A‐ran‐B) diblock consisting of monomer units A and B, the interblock segregation strength can be continuously tuned through the B content of the random block, allowing the design of block copolymers with accessible order‐disorder transitions at arbitrarily high molecular weights. Moreover, the development of controlled radical polymerizations has greatly expanded the palette of accessible monomer units A and B, including units with strongly interacting functional groups. We synthesize a range of copolymers consisting of styrene (S) and acetoxystyrene (AS) units, including copolymers where one block is P(S‐ran‐AS), through nitroxide‐mediated radical polymerization. At sufficiently high molecular weights, near‐symmetric PS‐PAS diblocks show well‐ordered lamellar morphologies, while dilution of the repulsive S‐AS interactions in PS‐P(S‐ran‐AS) diblocks yields a phase‐mixed morphology. Cleavage of a sufficient fraction of the AS units in a phase‐mixed PS‐P(S‐ran‐AS) diblock to hydrogen‐bonding hydroxystyrene (HS) units yields, in turn, a microphase‐separated melt. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47:2106–2113, 2009.  相似文献   

9.
A simple fiber optic based scheme for the selective detection of proteins, based on surface electrostatic interactions, is presented. The implementation of this method is conducted using a modified polymer optical fiber's surface and thin overlayers of properly designed sensitive copolymer materials with predesigned molecular characteristics. Block poly(styrene‐b‐2vinylpyridine) (PS‐b‐P2VP) and random PS‐r‐P2VP copolymers of the same monomers and similar molecular weights, were modified and used as sensing materials. This configuration proved to be efficient concerning the fast detection of charged proteins, and also the efficient discrimination of differently charged proteins such as lysozyme and bovine serum albumin. Results on the sensing performance of block and random copolymers are also discussed drawing conclusion on their efficiency given their considerable different fabrication cost. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 327–334  相似文献   

10.
Copper(I)‐mediated living radical polymerization was used to synthesize amphiphilic block copolymers of poly(n‐butyl methacrylate) [P(n‐BMA)] and poly[(2‐dimethylamino)ethyl methacrylate] (PDMAEMA). Functionalized bromo P(n‐BMA) macroinitiators were prepared from monofunctional, difunctional, and trifunctional initiators: 2‐bromo‐2‐methylpropionic acid 4‐methoxyphenyl ester, 1,4‐(2′‐bromo‐2′‐methyl‐propionate)benzene, and 1,3,5‐(2′‐bromo‐2′‐methylpropionato)benzene. The living nature of the polymerizations involved was investigated in each case, leading to narrow‐polydispersity polymers for which the number‐average molecular weight increased fairly linearly with time with good first‐order kinetics in the monomer. These macroinitiators were subsequently used for the polymerization of (2‐dimethylamino)ethyl methacrylate to obtain well‐defined [P(n‐BMA)xb‐PDMAEMAy]z diblock (15,900; polydispersity index = 1.60), triblock (23,200; polydispersity index = 1.24), and star block copolymers (50,700; polydispersity index = 1.46). Amphiphilic block copolymers contained between 60 and 80 mol % hydrophilic PDMAEMA blocks to solubilize them in water. The polymers were quaternized with methyl iodide to render them even more hydrophilic. The aggregation behavior of these copolymers was investigated with fluorescence spectroscopy and dynamic light scattering. For blocks of similar comonomer compositions, the apparent critical aggregation concentration (cac = 3.22–7.13 × 10?3 g L?1) and the aggregate size (ca. 65 nm) were both dependent on the copolymer architecture. However, for the same copolymer structure, increasing the hydrophilic PDMAEMA block length had little effect on the cac but resulted in a change in the aggregate size. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 439–450, 2002; DOI 10.1002/pola.10122  相似文献   

11.
In the reversible addition–fragmentation transfer (RAFT) copolymerization of two monomers, even with the simple terminal model, there are two kinds of macroradical and two kinds of polymeric RAFT agent with different R groups. Because the structure of the R group could exert a significant influence on the RAFT process, RAFT copolymerization may behave differently from RAFT homopolymerization. The RAFT copolymerization of methyl methacrylate (MMA) and styrene (St) in miniemulsion was investigated. The performance of the RAFT copolymerization of MMA/St in miniemulsion was found to be dependent on the feed monomer compositions. When St is dominant in the feed monomer composition, RAFT copolymerization is well controlled in the whole range of monomer conversion. However, when MMA is dominant, RAFT copolymerization may be, in some cases, out of control in the late stage of copolymerization, and characterized by a fast increase in the polydispersity index (PDI). The RAFT process was found to have little influence on composition evolution during copolymerization. The synthesis of the well‐defined gradient copolymers and poly[St‐b‐(St‐co‐MMA)] block copolymer by RAFT miniemulsion copolymerization was also demonstrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6248–6258, 2004  相似文献   

12.
A new, simple, and cost‐effective approach toward the development of well‐defined optically active diblock copolymers based on methacrylate monomers is described for the first time. Starting from the low‐cost optically active (S)‐(?)‐2‐methyl‐1‐butanol, a new optically active methacrylic monomer, namely, (S)‐(+)‐2‐methyl‐1‐butyl methacrylate [(S)‐(+)‐MBuMA], was synthesized. Reversible addition fragmentation chain transfer polymerization was then used for preparing well‐defined poly[(S)‐(+)‐MBuMA] homopolymers and water‐soluble diblock copolymers based on [(S)‐(+)‐MBuMA] and the hydrophilic and ionizable monomer 2‐(dimethyl amino)ethyl methacrylate (DMAEMA). The respective homopolymers and diblock copolymers were characterized in terms of their molecular weights, polydispersity indices, and compositions by size exclusion chromatography and 1H NMR spectroscopy. Polarimetry measurements were used to determine the specific optical rotations of these systems. The structural and compositional characteristics of micellar nanostructures possessing an optically active core generated by p((S)‐(+)‐MBuMA)‐b‐p(DMAEMA) chains characterized by predetermined molecular characteristics may be easily tuned to match biological constructs. Consequently, the aggregation behavior of the p[(S)‐(+)‐MBuMA]‐b‐p[DMAEMA] diblock copolymers was investigated in aqueous media by means of dynamic light scattering and atomic force microscopy, which revealed the formation of micelles in neutral and acidified aqueous solutions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Bulk free‐radical polymerization of 2‐vinylpyridine (2VP) in the presence of 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) was studied under different conditions (temperature and presence of additives). Linear poly‐(2‐vinylpyridine) with a narrow molecular weight distribution and controllable molecular weight was prepared in the presence of acetic anhydride at 95 °C up to a conversion of 66%. At higher conversions side reactions became very important (pseudoliving polymerization). By applying this procedure, well‐defined random copolymers of 2VP with styrene or tert‐butylmethacrylate as well as block copolymers of 2VP with styrene were synthesized. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2889–2895, 2001  相似文献   

14.
One‐step synthesis of block‐graft copolymers by reversible addition‐fragmentation chain transfer (RAFT) and ring‐opening polymerization (ROP) by using a novel initiator was reported. Block‐graft copolymers were synthesized in one‐step by simultaneous RAFT polymerization of n‐butylmethacrylate (nBMA) and ROP of ε‐caprolacton (CL) in the presence of a novel macroinitiator (RAFT‐ROP agent). For this purpose, first epichlorohydrin (EPCH) was polymerized by using H2SO4 via cationic ring‐opening mechanism. And then a novel RAFT‐ROP agent was synthesized by the reaction of potassium ethyl xanthogenate and polyepichlorohydrin (poly‐EPCH). By using the RAFT‐ROP agent, poly[CL‐b‐EPCH‐b‐CL‐(g‐nBMA)] block‐graft copolymers were synthesized. The principal parameters such as monomer concentration, initiator concentration, and polymerization time that affect the one‐step polymerization reaction were evaluated. The block lengths of the block‐graft copolymers were calculated by using 1H‐nuclear magnetic resonance (1H NMR) spectrum. The block length could be adjusted by varying the monomer and initiator concentrations. The characterization of the products was achieved using 1H NMR, Fourier‐transform infrared spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, elemental analysis, and fractional precipitation (γ) techniques. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2651–2659  相似文献   

15.
Densely grafted copolymers were synthesized using the “grafting from” approach via the combination of reversible addition‐fragment chain transfer polymerization (RAFT) and atom transfer radical polymerization (ATRP). First, a novel functional monomer, 2,3‐di(2‐bromoisobutyryloxy)ethyl acrylate (DBPPA), with two initiating groups for ATRP was synthesized. It was then polymerized via RAFT polymerization to give macroinitiators for ATRP with controlled molecular weights and narrow molecular weight distributions. Last, ATRP of styrene was carried out using poly(DBPPA)s as macroinitiators to prepare comblike poly(DBPPA)‐graft‐polystyrenes carrying double branches in each repeating unit of backbone via “grafting from” approach. Furthermore, poly(DBPPA)‐graft‐[polystyrene‐block‐poly(t‐BA)]s and their hydrolyzed products poly(DBPPA)‐graft‐[polystyrene‐block‐poly(acrylic acid)]s were also successfully prepared. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 362–372, 2008  相似文献   

16.
1H,1H,2H,2H‐Perfluorooctyloxymethylstyrene (FS) was prepared and copolymerized with chloromethylstyrene (CMS). Conventional radical copolymerization of both these aromatic monomers led to poly(CMS‐co‐FS) random copolymers for which CMS was shown to be more reactive than the fluorinated comonomer. Their controlled radical copolymerization based on degenerative transfer, namely iodine transfer polymerization (ITP), led to various poly(CMS)‐b‐poly(FS) block copolymers. Molecular weights of poly(CMS‐co‐FS) copolymers reached 33,000 g mol?1 while those of poly(CMS)‐b‐ poly(FS) block copolymers were 22,000 g mol?1. Their composition ranged from 18 to 61 mol.% in FS. These copolymers were modified via a cationization step, aiming at replacing the chlorine atom in CMS unit by a trimethylammonium group, leading to the formation of cationic sites. The resulting functionalized copolymers exhibited different solubilities. If both copolymerization techniques led to water‐insoluble copolymers, the block architecture enabled incorporating lower FS proportion, resulting in more cationic sites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Poly(fluoroalkyl mathacrylate)‐block‐poly(butyl methacrylate) diblock copolymer latices were synthesized by a two‐step process. In the first step, a homopolymer end‐capped with a dithiobenzoyl group [poly(fluoroalkyl mathacrylate) (PFAMA) or poly(butyl methacrylate) (PBMA)] was prepared in bulk via reversible addition–fragmentation chain transfer (RAFT) polymerization with 2‐cyanoprop‐2‐yl dithiobenzoate as a RAFT agent. In the second step, the homopolymer chain‐transfer agent (macro‐CTA) was dissolved in the second monomer, mixed with a water phase containing a surfactant, and then ultrasonicated to form a miniemulsion. Subsequently, the RAFT‐mediated miniemulsion polymerization of the second monomer (butyl methacrylate or fluoroalkyl mathacrylate) was carried out in the presence of the first block macro‐CTA. The influence of the polymerization sequence of the two kinds of monomers on the colloidal stability and molecular weight distribution was investigated. Gel permeation chromatography analyses and particle size results indicated that using the PFAMA macro‐CTA as the first block was better than using the PBMA RAFT agent with respect to the colloidal stability and the narrow molecular weight distribution of the F‐copolymer latices. The F‐copolymers were characterized with 1H NMR, 19F NMR, and Fourier transform infrared spectroscopy. Comparing the contact angle of a water droplet on a thin film formed by the fluorinated copolymer with that of PBMA, we found that for the diblock copolymers containing a fluorinated block, the surface energy decreased greatly, and the hydrophobicity increased. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 471–484, 2007  相似文献   

18.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

19.
Reversible addition‐fragmentation chain transfer (RAFT) miniemulsion polymerization of butyl methacrylate (BMA) and dodecafluoroheptyl methacrylate (DFMA) was carried out with 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) as chain transfer agent (CTA). Concentration effects of RAFT agent and initiator on kinetics and molecular weight were investigated. No obvious red oil layer (phase's separation) and coagulation was observed in the first stage of homopolymerization of BMA. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. At 75 °C, the monomer conversion could achieve above 96% in 3 h with [momomer]:[RAFT]:[KPS] = 620:4:1 (mole ratio). The results showed excellent controlled/living polymerization characteristics and a very fast polymerization rate. Furthermore, the synthesis of poly(BMA‐b‐DFMA) diblock copolymers with a regular structure (PDI < 1.30, PMMA calibration) was performed by adding the monomer of DFMA at the end of the RAFT miniemulsion polymerization of BMA. The success of diblock copolymerization was showed by the molecular weight curves shifting toward higher molar mass, recorded by gel permeation chromatography before and after block copolymerization. Compositions of block copolymers were further confirmed by 1H NMR, FTIR, and DSC analysis. The copolymers exhibited a phase‐separated morphology and possessed distinct glass transition temperatures associated with fluoropolymer PDFMA and PBMA domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1585–1594, 2007  相似文献   

20.
Hyperbranched poly(ether sulfone) was prepared in the presence of an oligomeric linear poly(ether sulfone) to generate multiblock hyperbranched‐linear (LxHB) copolymers. The LxHB copolymers were prepared in a two‐step, one‐pot synthesis by first polymerizing AB monomer to generate a linear block of a desired molecular weight followed by addition of the AB2 monomer in a large excess (19:1, AB2:AB) to generate the hyperbranched block. NMR integration analysis indicates that AB2:AB ratio is independent of the reaction time. Because the molecular weight still increases with reaction time, these results suggest that polymer growth continues after consumption of monomer by condensation into a multiblock architecture. The LxHB poly(ether sulfone)s have better thermal stability (10% mass loss > 343 vs. 317 °C) and lower Tg (200 vs. > 250 °C) than the hyperbranched homopolymer, higher Tg than the linear homopolymer (<154 °C), while little difference in the solubility character was observed between the two polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4785–4793, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号