首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 372 毫秒
1.
采用光-示差扫描量热法(P-DSC)和光-流变学(P-Rheology)技术,测定了丙烯酸酯/液晶体系的光聚合反应动力学和凝胶化时间.基于自催化模型和凝胶时间-温度关系,计算了体系的光聚合反应速率常数和活化能,探讨了单体结构与组成、反应温度对体系光聚合动力学的影响,并研究了聚合物分散液晶(PDLC)的电光响应行为与相分离结构对光聚合动力学的依赖性.结果表明,升高反应温度、增加体系的单体反应活性和平均官能度,均提高了体系的光聚合速率常数,缩短了光聚合凝胶时间.随着单体反应活性和平均官能度的提高,体系的光聚合反应活化能明显降低,且凝胶化前的光聚合反应活化能低于光聚合全过程的平均反应活化能.当液晶含量为50%时,形成的PDLC呈亚微米尺度的双连续相结构.随着光聚合反应温度的升高,光聚合速率加快,导致凝胶时间缩短、相分离程度降低,使PDLC中液晶相尺寸变小、聚合物网络致密化,PDLC的弛豫时间延长、饱和电压降低,而开启时间和阈值电压变化不大.  相似文献   

2.
手性丙烯酸酯液晶原位光聚合反应何流,张树范,金顺子,漆宗能,王佛松(中国科学院化学研究所北京100080)关键词手性丙烯酸酯,原位光聚合,双折射,近晶相手性侧链液晶高分子显示近晶S!相,具有铁电性,在光电功能材料和非线性光学材料方面有潜在的应用前景’...  相似文献   

3.
采用光差示扫描量热分析,研究了以2, 4, 6-三甲基苯甲酰基-二苯基氧化膦(TPO)为光引发剂、丙烯酸异辛酯(EHA)和三羟甲基丙烷三甲基丙烯酸酯(TMPTA)为单体、液晶为P0616A的丙烯酸酯/液晶复合体系在-40~80℃的光聚合动力学。研究表明:丙烯酸酯/液晶复合体系光聚合的自动加速现象非常显著,聚合反应速率和表观动力学常数在聚合过程中均存在最大值。随着反应温度的提高,体系的最终转化率、最大聚合反应速率(Rpmax)均明显提高,当反应温度高于20℃后,其增长均趋于平缓。随着体系中液晶含量的增加,体系的Rpmax呈下降趋势,体系的聚合反应转化率随时间的增长速率较慢,但是最终转化率差别不大,均接近80%。随着UV光强的增高,体系的Rpmax和最终转化率均明显提高, 体系的阈值光强约为4 mw/cm2。而随着体系平均官能度的增加,体系的Rpmax和最终转化率则呈下降的趋势。  相似文献   

4.
以Ar+激光器为光源, 采用虎红、 N-苯基甘氨酸、二季戊四醇羟基五丙烯酸酯和乙烯基吡咯烷酮分别作为光引发剂、共引发剂、预聚物和稀释剂, 与液晶材料TEB30A结合, 通过光聚合反应, 制备了聚合物分散液晶(PDLC), 用紫外光谱和荧光光谱对其反应机理进行了分析. 实验结果表明, PDLC是通过光引发剂吸收光子能量后与共引发剂相互作用, 形成自由基中间体并引发聚合反应, 使预聚物与液晶产生相分离形成的.  相似文献   

5.
全息聚合物分散液晶(HPDLCs)是由富聚合物相与富液晶相周期性排列而成的结构有序高分子复合材料.HPDLCs通过单体/液晶复合体系的光聚合诱导相分离而形成,如何调控并定量化描述复合体系的光聚合反应动力学、凝胶化行为和相分离程度,进而获得结构规整、电光性能优异的HPDLCs是关键难题.专论概述了光引发体系、单体结构、纳米无机材料掺杂对HPDLCs结构及性能的影响.光引发阻聚剂通过引发和阻聚的竞争与协同,降低了光聚合反应速率、延迟了凝胶时间,促进形成衍射效率达90%的HPDLCs.超支化单体降低了复合体系黏度和光聚合反应速率,延迟了凝胶时间,促使形成衍射效率达94%、具有一维光子晶体结构的HPDLCs.丙烯酰胺单体优化了相分离结构,将HPDLCs的衍射效率提升至98%.纳米硫化锌掺杂在保持规整结构和高衍射效率的同时,大幅降低了HPDLCs的驱动电压.研究还确定了HPDLCs的相分离程度与凝胶时间的函数关系.构建兼具高衍射效率与低驱动电压的HPDLCs,推进其在彩色3D图像存储等领域的应用仍是重要课题.  相似文献   

6.
用X-光衍射,偏光显微镜及DSC对含两种不同长度介晶基团4,4’-联苯二酚(Ⅰ)和对苯二甲酸二(对羟苯基)酯(Ⅱ)的系列共聚酯的液晶态进行了表征,据其液晶态中两种介晶单元的堆砌方式提出了可能的模型,这种模型很好地解释了液晶态的X-光衍射分布.  相似文献   

7.
以丙烯酸-2-乙基己酯(EHA)、二甲基丙烯酸乙二酯(EDMA)/季戊四醇四丙烯酸酯(PETTA)为混合单体、液晶P0616A为液晶相、Irgacure 184为光引发剂,通过UV光引发制备了聚合物分散液晶(PDLCs),研究了不同烷基链长醇,即乙醇(EtOH)、正丁醇(nBA)、正己醇(nHA)、正辛醇(nOA)和正十四醇(nTA)对体系光聚合动力学及其PDLCs液晶相变温度及电光特性的影响.结果表明引入醇分子显著加快了丙烯酸酯/液晶复合体系的光聚合反应速率,提高了单体的最终转化率,其中以正丁醇体系最为明显.随着醇分子烷基链的增长,体系的转化率趋于降低,但依然明显高于不含醇的体系.醇分子的加入降低了PDLCs中液晶相的TNI,且随着醇分子烷基链长的增长,PDLCs液晶相的TNI总体上呈降低的趋势.醇分子的加入增加了PDLCs液晶微区中向列相液晶的含量,而含正丁醇和正十四醇的体系液晶微区中向列相液晶低于其它3个含醇体系.醇分子的加入明显降低了PDLCs的阈值电压和饱和电压以及对比度.结合体系的光聚合速率和单体转化率,正丁醇是改善PDLCs性能的最佳选择.  相似文献   

8.
研究了在双十六烷基二甲基溴化铵(DCDAB)形成的微泡溶液中,二苯酮(BP)/三乙胺(TEA)体系的光化学初级反应和引发MMA光聚合反应.动力学实验结果表明,DCDAB微泡对聚合反应有显著的催化作用,使聚合速度提高近4倍左右,其效果和离子型胶束的催化作用结果相近.由DCDAB微泡中光聚合得到的产物PMMA,具有较高的结构规整性,它的间同和全同结构可达70%左右.  相似文献   

9.
研究了新型高活性乙烯气相聚合催化剂TiCl4/MgCl2/ZnCl2/SiCl4/醇/Al(i-Bu)3体系中钛和醇组分含量对聚合反应和产物颗粒形态的影响。测定了乙烯气相聚合反应动力学曲线,确定了聚合动力学方程。用SEM,DSC,WAXD,^1^3CNMR对催化剂及聚合物的形态,结构和性能进行了分析和表征。  相似文献   

10.
以茂金属化合物[(CH3)2C(η-C5H3)(η-C9H6)]ZrCl2为主催化剂,甲基铝氧烷MAO为助催化剂催化乙烯聚合,对不同的反应条件下(如温度,铝锆摩尔比)聚合反应的动力学进行了研究,并根据此聚合反应体系的动力学特点及考虑到活性中心的再活化,在分析和研究以往的动力学模型的基础上,对烯烃均相聚合动力学反应作了一些假定,建立了动力学模型,用模型对实验数据进行了拟合,结果表明与实验数据相吻合,可以认为,在该聚合反应体系中,确实存在铝氧烷的再活化作用,根据模拟拟合得到了聚合反应的动力学参数。  相似文献   

11.
Phase diagrams for mixtures of liquid crystal (LC)/monomer with and without an external electrical field applied have been established using polarized light microscope (PLM).The (isotropic + nematic) coexistent phase region and (isotropic + isotropic) phase boundary of LC/monomer mixtures were observed to shift upward to higher temperatures when the external electrical field exists. It was found that the electrical field applied during the cross-linking polymerization has a significant influence on the phase diagrams for the LC/polymer mixtures by rendering the coexistent phase regions shift upward to higher temperatures. The influence of the external electrical field on the processes of the isotropic-isotropic phase separation and liquid crystal ordering in PDLC formation has also been investigated. The results revealed that both the processes could be highly accelerated by the electrical field.  相似文献   

12.
A new method for measuring a polar anchoring energy of nematic liquid crystals (LCs) is proposed. A variation of LC tilt angle on the surface with an applied electrical field was determined by a reflective method. The twisted LC cell configuration was selected to compensate a contribution of the induced birefringence in the reflective spectra. The electrical field controlled reflectance was used to analyse the potential form of the polar anchoring energy and to define the anchoring strength. The proposed method is applicable for 2–5 μm thick LC cells.  相似文献   

13.
We report orientational anchoring transitions at aqueous interfaces of a water-immiscible, thermotropic liquid crystal (LC; nematic phase of 4'-pentyl-4-cyanobiphenyl (5CB)) that are induced by changes in pH and the addition of simple electrolytes (NaCl) to the aqueous phase. Whereas measurements of the zeta potential on the aqueous side of the interface of LC-in-water emulsions prepared with 5CB confirm pH-dependent formation of an electrical double layer extending into the aqueous phase, quantification of the orientational ordering of the LC leads to the proposition that an electrical double layer is also formed on the LC-side of the interface with an internal electric field that drives the LC anchoring transition. Further support for this conclusion is obtained from measurements of the dependence of LC ordering on pH and ionic strength, as well as a simple model based on the Poisson-Boltzmann equation from which we calculate the contribution of an electrical double layer to the orientational anchoring energy of the LC. Overall, the results presented herein provide new fundamental insights into ionic phenomena at LC-aqueous interfaces, and expand the range of solutes known to cause orientational anchoring transitions at LC-aqueous interfaces beyond previously examined amphiphilic adsorbates.  相似文献   

14.
The factors that control the alignment of LC side-chain polymers in directing a.c. and d.c. electric fields are critically reviewed. The principles involved when alignment is attempted by cooling from the melt in the presence of an electric field or by direct application of the field to a material in its liquid-crystalline (LC) state are outlined, and the difficulties which may be encountered in practice are described and evaluated. An “electrical cleaning” method whereby the low-frequency conductance losses in a sample may be reduced is described and is applied to LC polymer materials. Experimental dielectric data are presented and analysed for two LC polymers which contain azo-groups in the side chains.  相似文献   

15.
A composite system of Fe3O4 nanoparticle-doped chiral nematic liquid crystals (N*LC) with flexible display performance was proposed. Fe3O4 nanoparticle and the nanoparticle-doped N*LC composite were detailed prepared and investigated. The influence of nanoparticle doping amount and chiral compound content on the magnetic performance as well as electrical performance of the flexible device had been studied in detail. The most suitable N*LC composites for magnetic-driven display had been found. With the characteristics of simple preparation, good stability and high resolution, the Fe3O4 nanoparticle-doped N*LCs had promising applications for power-free magnetic-driven flexible LC paper or display board.  相似文献   

16.
Aqueous two-phase systems (ATPS) are formed in mixtures of sodium dodecylsulfate (SDS), cetyltrimethyl ammonium bromide (CTAB), and sodium bromide (NaBr). Two different kinds of ATPS appear when CTAB and SDS surfactants are in excess, respectively. Such ATPS may provide a new, useful partitioning system for separation of bovine serum albumin (BSA). The partitioning of BSA was studied in these systems. The results show that the partitioning is affected by the electrical property, the hydrophobicity and the structure of liquid crystal (LC), which exists in the top phase of the ATPS. BSA is extracted into the top phase with higher distribution coefficient when LC and BSA are oppositely charged. The hydrophobicity of LC, which can be improved by increasing the length of alkyl group, enhances the distribution coefficient. The hydrophobicity of lamellar LC and hexagonal LC is stronger than that of cubic LC, which causes extractive capability of the former is higher than the latter.  相似文献   

17.
Yang Liu  Jiatong Sun 《Liquid crystals》2019,46(7):1052-1059
Ion beam (IB)-spurted indium tin oxide (ITO) thin layers are used to align liquid crystals (LC) with a lower driving voltage. During IB spurting process, the microcrystals transforming to large crystals of ITO is intimated by the change of In (3d), Sn (3d) and O (1s) core level in XPS spectra and the surface topology modifications in SEM and AFM images, and IB-spurted ITO thin layers are comparably transparent and conductive compared with ITO thin layers. The increased interactions between LC and IB-spurted ITO thin layers together with the roughed surface topology of ITO thin layers are the main causes for LC alignment. The fast response and distribution of electrical dipoles to external voltage in LC causes LC’s extremely low threshold voltage drive; in addition, LC directly aligned on ITO thin layers free from alignment layers shield effect further decreases LC’s threshold voltage. 1.8-keV IB-spurted ITO thin layers are more appropriate to align LC with the threshold voltage of 0.4853 V and the rising time of 0.237 ms.  相似文献   

18.
Aerogels of high porosity and with a large internal surface area exhibit outstanding performances as thermal, acoustic, or electrical insulators. However, most aerogels are mechanically brittle and optically opaque, and the structural and physical properties of aerogels strongly depend on their densities. The unfavorable characteristics of aerogels are intrinsic to their skeletal structures consisting of randomly interconnected spherical nanoparticles. A structurally new type of aerogel with a three‐dimensionally ordered nanofiber skeleton of liquid‐crystalline nanocellulose (LC‐NCell) is now reported. This LC‐NCell material is composed of mechanically strong, surface‐carboxylated cellulose nanofibers dispersed in a nematic LC order. The LC‐NCell aerogels are transparent and combine mechanical toughness and good insulation properties. These properties of the LC‐NCell aerogels could also be readily controlled.  相似文献   

19.
ABSTRACT

The properties of the thin films of liquid crystal (LC) molecules can be governed easily by external fields. The anisotropic structure of the LC molecules has a large impact on the electrical and optical properties of the film. The Langmuir monolayer (LM) of LC molecules at the air–water interface is known to exhibit a variety of surface phases which can be transferred onto a solid substrate using the Langmuir?Blodgett (LB) technique. Here, we have studied the LM and LB films of asymmetrically substituted bent-core LC molecules. The morphology of LB film of the molecules is found to be a controlling parameter for aligning bulk LC in the nematic phase. It was found that the LB films of the bent-core molecules possessing defects favour the planar orientation of nematic LC, whereas the LB films with fewer defects show homeotropic alignment. The defect in LB films may introduce splay or bend distortions in the nematic near the alignment layer which can govern the planar alignment of the bulk LC. The uniform layer of LB film facilitates the molecules of nematic to anchor vertically due to a strong van der Waals interaction between the aliphatic chains leading to a homeotropic alignment.  相似文献   

20.
ABSTRACT

There is a widely applied prospect of electrical controlled liquid crystal (LC) light-scattering device. Numerous electrical controlled LC light-scattering technologies have been studied, but each technology has its own shortcomings, such as high driving voltage, high hysteresis, complex electrode structure, and serious heating. In this work, the composite of LC and polymer microspheres are used to fabricate light-scattering devices. This device is operated by the vertical electric field and does not require complex preparation process. LC/polymer microsphere composite has the advantages of low driving voltage and zero hysteresis. The role of microspheres in the composites is to change the size and density of a refractive-index-mismatched micro-domain. The effects of the ratio, particle size, and refractive index of microspheres on the optical characteristics of a composite are studied. The normal directional light transmittance at the transparent state and light-scattering state decreases with an increasing weight ratio of microspheres. The particle size of microspheres has negligible influence on the electro-optical properties of composites when the weight ratio of microspheres is small. The LCs doped with Polymethylsilsesquioxane (PMSQ) microspheres or polymethyl methacrylate (PMMA) microspheres are compared, and the mismatched refractive index and density of micro-domain show the influence on the electro-optical properties of the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号