首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Human milk, serum, saliva, and seminal fluid glycoproteins (gps) nourish and protect newborn and adult tissues. Their saccharides, which resemble cell membrane components, may block pathogen adhesion and infection. In the present study, they were examined by a battery of lectins from plants, animals, and bacteria, using hemagglutination inhibition and Western blot analyses. The lectins included galactophilic ones from Aplysia gonad, Erythrina corallodendron, Maclura pomifera (MPL), peanut, and Pseudomonas aeruginosa (PA-IL); fucose-binding lectins from Pseudomonas aeruginosa (PA-IIL), Ralstonia solanacearum (RSL), and Ulex europaeus (UEA-I), and mannose/glucose-binding Con A. The results demonstrated the chosen lectin efficiency for differential analysis of human secreted gps as compared to CBB staining. They unveiled the diversity of these body fluid gp glycans (those of the milk and seminal fluid being highest): the milk gps interacted most strongly with PA-IIL, followed by RSL; the saliva gps with RSL, followed by PA-IIL and MPL; the serum gps with Con A and MPL, followed by PA-IIL and RSL, and the seminal plasma gps with RSL and MPL, followed by UEA-I and PA-IIL. The potential usage of these lectins as probes for scientific, industrial, and medical purposes, and for quality control of the desired gps is clearly indicated.  相似文献   

2.
Homo- and heterofunctionalized glycoclusters with galactose and/or fucose residues targeting both PA-IL and PA-IIL lectins of Pseudomonas aeruginosa were synthesized using "Click" chemistry and DNA chemistry. Their binding to lectins (separately or in a mixture) was studied using a DNA Directed Immobilization carbohydrate microarray. Homoglycoclusters bind selectively to their lectin while the heteroglycocluster binds simultaneously both lectins with a slight lower affinity.  相似文献   

3.
Multivalency is playing a major role in biological processes and particularly in lectin-carbohydrate interactions. The design of high-affinity ligands of lectins should provide molecules capable of interfering with these biological processes and potentially inhibit bacterial or viral infections. Azide-alkyne "click" chemistry was applied to the synthesis of dodecavalent fullerene-based glycoclusters. The conjugation could be efficiently performed from alkyne or azide functions on either partners (i.e. hexakis-fullerene adduct or glycoside). PA-IL is a bacterial lectin from the opportunistic pathogen Pseudomonas aeruginosa and is involved in the recognition of glycoconjugates on human tissues. The glycoclusters obtained were evaluated as ligands of PA-IL and for their potential for competing with its binding to glycosylated surfaces. The affinities measured by hemagglutination inhibition assay (HIA), enzyme-linked lectin assay (ELLA), and surface plasmon resonance (SPR) displayed a significant "glycoside cluster effect" with up to a 12,000-fold increase in binding when comparing a monovalent carbohydrate reference probe with a dodecavalent fullerene-based glycocluster, albeit with some differences depending on the analytical technique.  相似文献   

4.
The design of multivalent glycoconjugates has been developed over the past decades to obtain high-affinity ligands for lectin receptors. While multivalency frequently increases the affinity of a ligand for its lectin through the so-called "glycoside cluster effect", the binding profiles towards different lectins have been much less investigated. We have designed a series of multivalent galactosylated glycoconjugates and studied their binding properties towards two lectins, from plant and bacterial origins, to determine their potential selectivity. The synthesis was achieved through copper(I)-catalysed azide-alkyne cycloaddition (CuAAC) under microwave activation between propargylated multivalent scaffolds and an azido-functionalised carbohydrate derivative. The interactions of two galactose-binding lectins from Pseudomonas aeruginosa (PA-IL) and Erythrina cristagalli (ECA) with the synthesized glycoclusters were studied by hemagglutination inhibition assays (HIA), surface plasmon resonance (SPR) and isothermal titration microcalorimetry (ITC). The results obtained illustrate the influence of the scaffold's geometry on the affinity towards the lectin and also on the relative potency in comparison with a monovalent galactoside reference probe.  相似文献   

5.
Atomic force microscopy reveals that Pseudomonas aeruginosa LecA (PA-IL) and a tetra-galactosylated 1,3-alternate calix[4]arene-based glycocluster self-assemble according to an aggregative chelate binding mode to create monodimensional filaments. Lectin oligomers are identified along the filaments and defects in chelate binding generate branches and bifurcations. A molecular model with alternate 90° orientation of LecA tetramers is proposed to describe the organisation of lectins and glycoclusters in the filaments.  相似文献   

6.
The cell membrane is composed of a network of glycoconjugates including glycoproteins and glycolipids that presents a dense matrix of carbohydrates playing critical roles in many biological processes. Lectin-based technology has been widely used to characterize glycoconjugates in tissues and cell lines. However, their specificity toward their putative glycan ligand and sensitivity in situ have been technologically difficult to study. Additionally, because they recognize primarily glycans, the underlying glycoprotein targets are generally not known. In this study, we employed lectin proximity oxidative labeling (Lectin PROXL) to identify cell surface glycoproteins that contain glycans that are recognized by lectins. Commonly used lectins were modified with a probe to produce hydroxide radicals in the proximity of the labeled lectins. The underlying polypeptides of the glycoproteins recognized by the lectins are oxidized and identified by the standard proteomic workflow. As a result, approximately 70% of identified glycoproteins were oxidized in situ by all the lectin probes, while only 5% of the total proteins were oxidized. The correlation between the glycosites and oxidation sites demonstrated the effectiveness of the lectin probes. The specificity and sensitivity of each lectin were determined using site-specific glycan information obtained through glycomic and glycoproteomic analyses. Notably, the sialic acid-binding lectins and the fucose-binding lectins had higher specificity and sensitivity compared to other lectins, while those that were specific to high mannose glycans have poor sensitivity and specificity. This method offers an unprecedented view of the interactions of lectins with specific glycoproteins as well as protein networks that are mediated by specific glycan types on cell membranes.

A lectin proximity oxidative labeling (Lectin PROXL) tool was developed to identify cell surface glycoproteins that contain glycans that are recognized by lectins.  相似文献   

7.
In this study, a liquid-phase separation platform consisting of tandem lectin affinity chromatography was introduced for the selective capturing of sub-glycoproteomics that are affected in cancers, e.g. breast cancer. The platform is comprised of three monolithic columns with surface immobilised lectins including concanavalin A (Con A), wheat germ agglutinin (WGA) and Ricinus communis agglutinin-I (RCA-I). While WGA and Con A have specificities directed towards the core portion of N-glycans on the glycoprotein surface, RCA-I specifically interacts with the non-reducing terminal moieties of the outer chain structures of N-glycans. The effects of the order in which the three lectin columns were arranged in the tandem columns format were evaluated. The most suitable order proved to be WGA → Con A → RCA-I (denoted as WCR) as far as the number of captured proteins was concerned. The WCR tandem columns allowed the capture of 113 and 112 proteins from disease-free and breast cancer sera, respectively, corresponding to 75 and 65 non-redundant proteins, respectively. Using mass spectral count ratios and Q-Q plots yielded a panel of 23 non-redundant differentially expressed proteins (i.e. a panel of 23 candidate markers), which should in principle be more representative of a pathophysiological state than a single marker candidate.  相似文献   

8.
Monolithic capillary columns with surface bound lectin affinity ligands were introduced for performing lectin affinity chromatography (LAC) by nano-liquid chromatography (nano-LC). Two kinds of polymethacrylate monoliths were prepared, namely poly(glycidyl methacrylateco-ethylene dimethacrylate) and poly(glycidyl methacrylate-co-ethylene dimethacrylate-co-[2-(methacryloyloxy)ethyl]trimethyl ammonium chloride) to yield neutral and cationic macroporous polymer, respectively. Two lectins including concanavalin (Con A) and wheat germ agglutinin (WGA) were immobilized onto the monolithic capillary columns. The neutral monoliths with immobilized lectins exhibited lower permeability under pressure driven flow than the cationic monoliths indicating that the latter had wider flow-through pores than the former. Both types of monoliths with immobilized lectins exhibited strong affinity toward particular glycoproteins and their oligosaccharide chains (i.e., glycans) having sugar sequences recognizable by the lectin. Due to the strong binding affinity, the monoliths with surface bound lectins allowed the injection of relatively large volume (i.e., several column volumes) of dilute samples of glycoproteins and glycans thus allowing the concentration of the glycoconjugates and their subsequent isolation and detection at low levels (approximately 10(-8) M). To further exploit the lectin monoliths in the isolation of glycoconjugates, two-dimensional separation schemes involving LAC in the first dimension and reversed-phase nano-LC in the second dimension were introduced. The various interrelated methods established in this investigation are expected to play a major role in advancing the sciences of "nano-glycomics".  相似文献   

9.
Abstract— The oligosaccharides of rod and cone membranes were investigated with the aid of fluorescence and 125I-labeled lectins. Additionally, the ability of lectins to cause agglutination in rod outer segment (ROS) suspensions was used as an index for the presence of the corresponding lectin receptors. The specificities of lectin-ligand interactions were determined from studies of inhibition by various haptene sugars. The membranes of both rods and cones have receptors for Con A, PNA, RCA-120, RCA-60, SBA and WGA. The affinity of PNA for accessory cones is much higher than for the principal cones. There do not appear to be receptors for UeA and LTA on rods or cones. Additionally, receptors for HPA and DBA were identified on ROS. These results suggest the existence of the following sugar residues:

The binding of Con A and WGA to ROS membrane proteins electrophoresed on SDS-polyacrylamide gels was also investigated. In addition to rhodopsin, these lectins also bind to the 291000-dalton protein, indicating that it is a glycoprotein containing mannose and GlcNAc.  相似文献   

10.
Concanavalin A (Con A) or wheat germ agglutinin (WGA) was immobilized on a silica-based support, and the chromatographic behaviours of a series of dansylated ovalbumin-derived glycopeptides on small columns of the resultant gels were compared. These columns had high contents of lectins, and allowed differentiation of these glycopeptides. This method was rapid and reproducible, and enabled sensitive detection of these fluorescent glycopeptides. The structural requirement of these glycopeptides to manifest affinity to the immobilized lectins is also discussed, based on binding constants obtained from their retention times.  相似文献   

11.
Concanavalin A (Con A), wheat germ agglutinin (WGA), and Ricinus communis agglutinin (RCA) bound with either 125I, fluorescent dyes, or fluorescent polymeric microspheres were used to quantitate and visualize the distribution of lectin binding sites on mouse neuroblastoma cells. As viewed by fluorescent light and scanning electron microscopy, over 10(7) binding sites for Con A, WGA, and RCA appeared to be distributed randomly over the surface of differentiated and undifferentiated cells. An energy-dependent redistribution of labeled sites into a central spot occurred when the cells were labeled with a saturating dose of fluorescent lectin and maintained at 37 degrees C for 60 min. Reversible labeling using appropriate saccharide inhibitors indicated that the labeled sites had undergone endocytosis by the cell. A difference in the mode of redistribution of WGA or RCA and Con A binding sites was observed in double labeling experiments. When less than 10% of the WGA or RCA lectin binding sites were labeled, only these labeled sites appeared to be removed from the cell surface. In contrast, when less than 10% of the Con A sites were labeled, both labeled and unlabeled Con A binding sites were removed from the cell surface. Cytochalasin B uncoupled the coordinate redistribution of labeled and unlabeled Con A sites, suggesting the involvement of microfilaments. Finally, double labeling experiments employing fluorescein-tagged Con A and rhodamine-tagged WGA indicate that most Con A and WGA binding sites reside on different membrane components and redistribute independenty of each other.  相似文献   

12.
This work reports the use of matrices containing Cratylia mollis lectins (Cramoll 1,2,3-Sepharose and Cramoll 3-Sepharose) for isolation of glycoproteins from fetal bovine serum, human colostrum, hen egg white, and human blood plasma. Cramoll 1,2,3-Sepharose was able to bind a glycoprotein from fetal bovine serum which showed the same fetuin electrophoretic profile. The data indicate that this protein adsorbed to the matrix by interaction with Cramoll 3. Cramoll 1,2,3-Sepharose was not efficient to retain glycoproteins from human colostrum or commercial ovalbumin. Cramoll 3-Sepharose bound ovalbumin, and the support retained protein from hen egg white. Protein peaks eluted from the column with 1.0 M NaCl or 0.3 M galactose showed apparent molecular mass of ovalbumin. Two main proteins from blood plasma with apparent molecular mass 67 (similar to albumin) and 50 kDa (similar to fetuin) adsorbed on Cramoll 3-Sepharose and were eluted with 1.0 M NaCl as a single peak. Elution of adsorbed plasma proteins with 0.3 M galactose was less selective than with 1.0 M NaCl as revealed by SDS-PAGE. In conclusion, the Cramoll 1,2,3-Sepharose and Cramoll 3-Sepharose matrices were useful to separate glycoproteins from complex protein mixtures, and the adsorption phenomena was a carbohydrate-dependent event.  相似文献   

13.
We report on the preparation of an improved multi-lectin affinity support for HPLC separations. We combined the selectivity of three different lectins: concanavalin A (ConA), wheat germ agglutinin (WGA), and jacalin (JAC). Each lectin was first covalently immobilized onto a polymeric matrix and then the three lectin media were combined in equal ratios. The beads were packed into a column to produce a mixed-bed multi-lectin HPLC column (high-performance multi-lectin affinity chromatography (HP-M-LAC)) for fast chromatographic affinity separations. The support was characterized with respect to kinetics of immobilization, ligand density, and binding capacity for human plasma glycoproteins. A high lectin density (15 mg/mL of beads) was found to be optimal for the binding of glycoproteins from human plasma. A single clinical sample can be fractionated in less than 10 min per run, making this a useful sample preparation tool for proteomics/glycoproteomics studies associated with disease abnormalities.  相似文献   

14.
蛋白质的糖基化是最重要的翻译后修饰之一,与蛋白质结构和功能的关系密切。凝集素亲和色谱是蛋白质糖基化研究中很常用的工具,不同的凝集素可以对不同的单糖或寡糖有特异的富集作用。麦胚凝集素(WGA)由于其特异作用的糖型广泛存在而成为使用最多的凝集素之一。在本研究中,发现将WGA用于糖肽亲和富集会导致部分肽段的降解,从而导致后续的肽段序列分析的失败。本文用4种标准蛋白质对这种现象进行了验证,结果表明肽段的降解可以发生在多个位点,其中较多地发生在酪氨酸、苯丙氨酸及亮氨酸的羧基端。这一结果提示:在糖蛋白质组研究中,如果应用WGA富集糖肽并采用质谱进行鉴定,则采用半酶切或非特异性酶切的检索策略更为合适。  相似文献   

15.
As part of ongoing activities toward the design of potent and selective ligands against galactoside-binding proteins from animal, bacterial, and plant lectins, a systematic investigation involving the synthesis and binding evaluations of a series of original β-C-galactopyranoside mimetics is described. The multivalent presentation of partly optimized candidates on various dendritic scaffolds through Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAc) has also been achieved. Biophysical investigations based on isothermal titration calorimetry (ITC) have indicated a dissociation constant in the low micromolar range for the best optimized monovalent conjugate (K(d)=37 μM). The results thus confirmed that stable C-galactosides could represent efficient synthetic glycomimetics of natural α-linked oligosaccharidic inhibitors of PA-IL lectin (Lec A) from the pathogenic Pseudomonas aeruginosa. Striking enhancements in the avidity of the glycoconjugates were also observed for tri-, hexa-, and nonavalent derivatives, among which the most potent exhibited dissociation constants below 500 nM, corresponding to a 400-fold increase in affinity compared with the β-D-Gal-O-Me used as reference. To deepen our understanding of the binding mode of the best glycomimetics involved in the recognition process, molecular modeling studies, docking calculations, and NMR diffusion measurements have been performed. Although favorable complementary interactions induced by the addition of the hydrophobic aglycon might explain the affinity enhancement, experimental determination of the size and the topology of the multivalent conjugates further supported the formation of aggregative complexes as a major multivalent binding mode. This work represents a systematic and comprehensive study towards a thorough understanding of the protein-carbohydrate interactions involved in Pseudomonas aeruginosa infection, and as such should prove useful for the development of stable and optimized anti-adhesive agents.  相似文献   

16.
You J  Sheng X  Ding C  Sun Z  Suo Y  Wang H  Li Y 《Analytica chimica acta》2008,609(1):66-75
Surface plasmon resonance (SPR) was used to screen the interaction between a variety of affinity ligands and hemagglutinin (HA) from human influenza virus, with the aim of identifying low affinity ligands useful for the development of a rapid bioanalytical sensor. Three sialic acid-based structures and four lectins were evaluated as sensor ligands. The sialic acid-based ligands included a natural sialic acid-containing glycoprotein, human alpha1-acid glycoprotein (alpha1-AGP), and two synthetic 6'-sialyllactose-conjugates, with varying degree of substitution. The interaction of HA with the four lectin-based ligands, concanavalin A (Con A), wheat germ agglutinin (WGA), Maackia amurensis lectin (MAL), and Sambucus nigra agglutinin (SNA), showed a wide variation of affinity strengths. Affinity and kinetics data were estimated. Strong affinities were observed for Con A, WGA, alpha1-AGP, and a 6'-sialyllactose-conjugate with a high substitution degree, and low affinities were observed for MAL and a 6'-sialyllactose-conjugate with low substitution. The main objective, to identify a low affinity ligand which could be used for on-line monitoring and product quantification, was met by a 6'-sialyllactose-ovalbumin conjugate that had 0.6 mol ligand per mol carrier protein. The apparent affinity of this ligand was estimated to be 1.5+/-0.03 microM (K(D)) on the SPR surface. Vaccine process samples containing HA were analyzed in the range 10-100 microg HA mL(-1) and correlated with single-radial immunodiffusion. The coefficient of variation on the same chip was between 0.010 and 0.091.  相似文献   

17.
The synthesis of mannose‐substituted tetraphenylethenes (TPEs) and their aggregation‐induced emission (AIE) behavior, induced by interactions with concanavalin A (Con A), are reported. A mixture of the mannose‐TPE conjugates and Con A in a buffer solution displays an intense blue emission on agglutination within a few seconds, which serves as a “turn‐on” fluorescent sensor for lectins. The sensing is also selective: the conjugates act as a sensor for Con A, but do not sense a galactose‐binding lectin, PNA. Con A‐recognition is not affected even in the presence of other proteins in a mixture. The conjugates also exhibit high sensitivity to detect Con A. An increased sensitivity of the conjugates results if mannopyranoside substituents are linked to the TPE‐core unit with a flexible chain and/or when the number of mannose residues increases.  相似文献   

18.
Glycosylation is one the most common post-translational modifications (PTM) and glycoproteins play fundamental roles in a diversity of biological processes. The development of an analytical approach to the study of variation of glycosylation patterns in serum samples has been hindered by the structural heterogeneity of this post-translational modification and the complexity of serum proteome. We have used the ability of different lectins to recognize specific glycosylation motifs to develop a specific affinity system that can achieve a comprehensive capture of serum glycoproteins. In a preliminary investigation, we evaluated the ability of five commonly used immobilized lectins to capture glycoproteins from human serum. SDS-PAGE analysis showed each lectin was able to enrich a subset of the serum glycoproteome and overlaps in lectin specificity were indeed observed. Based on these results and with the goal of studying the extent of the human serum glycoproteome, we then developed a multi-lectin affinity column containing Concanavalin A (Con A), Wheat germ and Jacalin lectin. The selection of lectins was also based on the known N-linked and O-linked glycan structures that are considered representative of the serum proteome. We then demonstrated that the capture of glycoproteins was specific, efficient and reproducible with this multi-lectin column. The results obtained with this affinity step indicated that about 10% of human serum proteins are glycosylated (weight/weight) and, after removal of six high abundance proteins, including albumin, at least 50% of the remaining proteins were glycosylated. We then evaluated the use of this affinity column to monitor changes in the pattern of glycosylation in serum samples by a controlled, stepwise release of the captured proteins from the multi-lectin affinity column with specific displacers.  相似文献   

19.
Through mixing of porous polystyrene particles (Amberlite XAD-4), non-ionic surfactants, and surfactant-conjugated substrates (affinity ligand) in an aqueous solution led to the formation of a novel medium (affinity admicelle) for protein separation. The ligand (CB-Triton) was synthesized by mixing a triazine dye (Cibacron Blue 3GA (CB)) and a polyoxyethylene-type non-ionic surfactant (Triton X-100) in weakly alkaline solutions. Triton X-100 and CB-Triton were competitively sorbed onto XAD-4. Albumin (bovine serum), alcohol dehydrogenase (yeast), and lysozyme (chicken egg) having specific interaction to CB were collected onto the affinity admicelle. On the other hand, the collection of ovalubmin (chicken egg white), having no binding ability to CB, was negligibly small. Lysozyme in 100 microl of chicken egg white, diluted with 900 microl of 10 mM Tris-HCl (pH 7.4), was successfully collected on 18 mg of CB-Triton admicelles and, then, it was eluted with 1 ml of aqueous solution of 100 mM phosphate (pH 7.4). The recovery based on the activity for the lysis of micrococcus and the concentration factor were 60% and 40 (n = 3), respectively.  相似文献   

20.
Ahn YH  Ji ES  Shin PM  Kim KH  Kim YS  Ko JH  Yoo JS 《The Analyst》2012,137(3):691-703
A mass profiling method and multiple reaction monitoring (MRM)-based quantitative approach were used to analyze multiple lectin-captured fractions of human serum using different lectins such as aleuria aurantia lectin (AAL), phytohemagglutinin-L(4) (L-PHA), concanavalin A (Con A), and Datura stramonium agglutinin (DSA) to quantitatively monitor protein glycosylation diversity. Each fraction, prepared by multiple lectin-fractionation and tryptic digestion, was analyzed by 1-D LC-MS/MS. Semi-quantitative profiling showed that the list of glycoproteins identified from each lectin-captured fraction is significantly different according to the used lectin. Thus, it was confirmed that the multiplex lectin-channel monitoring (LCM) using multiple lectins is useful for investigating protein glycosylation diversity in a proteome sample. Based on the semi-quantitative mass profiling, target proteins showing lectin-specificity among each lectin-captured fraction were selected and analyzed by the MRM-based method in triplicate using each lectin-captured fraction (average CV 7.9%). The MRM-based analysis for each lectin-captured fraction was similar to those obtained by the profiling experiments. The abundance of each target protein measured varied dramatically, based on the lectin-specificity. The multiplex LCM approach using MRM-based analyses is useful for quantitatively monitoring target protein glycoforms selectively fractionated by multiple lectins. Thus through multiplex LCM rather than single, we could inquire minutely into protein glycosylation states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号