首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Finding the minimal H-eigenvalue of tensors is an important topic in tensor computation and numerical multilinear algebra. This paper is devoted to a sum-of-squares (SOS) algorithm for computing the minimal H-eigenvalues of tensors with some sign structures called extended essentially nonnegative tensors (EEN-tensors), which includes nonnegative tensors as a subclass. In the even-order symmetric case, we first discuss the positive semi-definiteness of EEN-tensors, and show that a positive semi-definite EEN-tensor is a nonnegative tensor or an M-tensor or the sum of a nonnegative tensor and an M-tensor, then we establish a checkable sufficient condition for the SOS decomposition of EEN-tensors. Finally, we present an efficient algorithm to compute the minimal H-eigenvalues of even-order symmetric EEN-tensors based on the SOS decomposition. Numerical experiments are given to show the efficiency of the proposed algorithm.  相似文献   

2.
We introduce a new class of nonnegative tensors—strictly nonnegative tensors.A weakly irreducible nonnegative tensor is a strictly nonnegative tensor but not vice versa.We show that the spectral radius of a strictly nonnegative tensor is always positive.We give some necessary and su?cient conditions for the six wellconditional classes of nonnegative tensors,introduced in the literature,and a full relationship picture about strictly nonnegative tensors with these six classes of nonnegative tensors.We then establish global R-linear convergence of a power method for finding the spectral radius of a nonnegative tensor under the condition of weak irreducibility.We show that for a nonnegative tensor T,there always exists a partition of the index set such that every tensor induced by the partition is weakly irreducible;and the spectral radius of T can be obtained from those spectral radii of the induced tensors.In this way,we develop a convergent algorithm for finding the spectral radius of a general nonnegative tensor without any additional assumption.Some preliminary numerical results show the feasibility and effectiveness of the algorithm.  相似文献   

3.
The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we first study properties of l k,s -singular values of real rectangular tensors. Then, a necessary and sufficient condition for the positive definiteness of partially symmetric rectangular tensors is given. Furthermore, we show that the weak Perron-Frobenius theorem for nonnegative partially symmetric rectangular tensor keeps valid under some new conditions and we prove a maximum property for the largest l k,s -singular values of nonnegative partially symmetric rectangular tensor. Finally, we prove that the largest l k,s -singular value of nonnegative weakly irreducible partially symmetric rectangular tensor is still geometrically simple.  相似文献   

4.
Tensor is a hot topic in the past decade and eigenvalue problems of higher order tensors become more and more important in the numerical multilinear algebra. Several methods for finding the Z-eigenvalues and generalized eigenvalues of symmetric tensors have been given. However, the convergence of these methods when the tensor is not symmetric but weakly symmetric is not assured. In this paper, we give two convergent gradient projection methods for computing some generalized eigenvalues of weakly symmetric tensors. The gradient projection method with Armijo step-size rule (AGP) can be viewed as a modification of the GEAP method. The spectral gradient projection method which is born from the combination of the BB method with the gradient projection method is superior to the GEAP, AG and AGP methods. We also make comparisons among the four methods. Some competitive numerical results are reported at the end of this paper.  相似文献   

5.
Stimulated by odd-bipartite and even-bipartite hypergraphs, we define odd-bipartite (weakly odd-bipartie) and even-bipartite (weakly evenbipartite) tensors. It is verified that all even order odd-bipartite tensors are irreducible tensors, while all even-bipartite tensors are reducible no matter the parity of the order. Based on properties of odd-bipartite tensors, we study the relationship between the largest H-eigenvalue of a Z-tensor with nonnegative diagonal elements, and the largest H-eigenvalue of absolute tensor of that Ztensor. When the order is even and the Z-tensor is weakly irreducible, we prove that the largest H-eigenvalue of the Z-tensor and the largest H-eigenvalue of the absolute tensor of that Z-tensor are equal, if and only if the Z-tensor is weakly odd-bipartite. Examples show the authenticity of the conclusions. Then, we prove that a symmetric Z-tensor with nonnegative diagonal entries and the absolute tensor of the Z-tensor are diagonal similar, if and only if the Z-tensor has even order and it is weakly odd-bipartite. After that, it is proved that, when an even order symmetric Z-tensor with nonnegative diagonal entries is weakly irreducible, the equality of the spectrum of the Z-tensor and the spectrum of absolute tensor of that Z-tensor, can be characterized by the equality of their spectral radii.  相似文献   

6.
A general product of tensors with applications   总被引:1,自引:0,他引:1  
We study a general product of two n  -dimensional tensors AA and BB with orders m?2m?2 and k?1k?1. This product satisfies the associative law, and is a generalization of the usual matrix product. Using this product, many concepts and known results of tensors can be simply expressed and/or proved, and a number of applications of it will be given. Using the associative law of this tensor product and some properties on the resultant of a system of homogeneous equations on n variables, we define the similarity and congruence of tensors (which are also the generalizations of the corresponding relations for matrices), and prove that similar tensors have the same characteristic polynomials, thus the same spectra. We study two special kinds of similarity: permutational similarity and diagonal similarity, and their applications in the study of the spectra of hypergraphs and nonnegative irreducible tensors. We also define the direct product of tensors (in matrix case it is also called the Kronecker product), and give its applications in the study of the spectra of two kinds of the products of hypergraphs. We also give applications of this general product in the study of nonnegative tensors, including a characterization of primitive tensors, the upper bounds of primitive degrees and the cyclic indices of some nonnegative irreducible tensors.  相似文献   

7.
Let A be an mth order n-dimensional tensor, where m, n are some positive integers and N:= m(n?1). Then A is called a Hankel tensor associated with a vector v ∈ ?N+1 if Aσ = v k for each k = 0, 1,...,N whenever σ = (i1,..., im) satisfies i1 +· · ·+im = m+k. We introduce the elementary Hankel tensors which are some special Hankel tensors, and present all the eigenvalues of the elementary Hankel tensors for k = 0, 1, 2. We also show that a convolution can be expressed as the product of some third-order elementary Hankel tensors, and a Hankel tensor can be decomposed as a convolution of two Vandermonde matrices following the definition of the convolution of tensors. Finally, we use the properties of the convolution to characterize Hankel tensors and (0,1) Hankel tensors.  相似文献   

8.
Eigenvalues and invariants of tensors   总被引:3,自引:0,他引:3  
A tensor is represented by a supermatrix under a co-ordinate system. In this paper, we define E-eigenvalues and E-eigenvectors for tensors and supermatrices. By the resultant theory, we define the E-characteristic polynomial of a tensor. An E-eigenvalue of a tensor is a root of the E-characteristic polynomial. In the regular case, a complex number is an E-eigenvalue if and only if it is a root of the E-characteristic polynomial. We convert the E-characteristic polynomial of a tensor to a monic polynomial and show that the coefficients of that monic polynomial are invariants of that tensor, i.e., they are invariant under co-ordinate system changes. We call them principal invariants of that tensor. The maximum number of principal invariants of mth order n-dimensional tensors is a function of m and n. We denote it by d(m,n) and show that d(1,n)=1, d(2,n)=n, d(m,2)=m for m?3 and d(m,n)?mn−1+?+m for m,n?3. We also define the rank of a tensor. All real eigenvectors associated with nonzero E-eigenvalues are in a subspace with dimension equal to its rank.  相似文献   

9.
Finding the maximum eigenvalue of a symmetric tensor is an important topic in tensor computation and numerical multilinear algebra. In this paper, we introduce a new class of structured tensors called W‐tensors, which not only extends the well‐studied nonnegative tensors by allowing negative entries but also covers several important tensors arising naturally from spectral hypergraph theory. We then show that finding the maximum H‐eigenvalue of an even‐order symmetric W‐tensor is equivalent to solving a structured semidefinite program and hence can be validated in polynomial time. This yields a highly efficient semidefinite program algorithm for computing the maximum H‐eigenvalue of W‐tensors and is based on a new structured sums‐of‐squares decomposition result for a nonnegative polynomial induced by W‐tensors. Numerical experiments illustrate that the proposed algorithm can successfully find the maximum H‐eigenvalue of W‐tensors with dimension up to 10,000, subject to machine precision. As applications, we provide a polynomial time algorithm for computing the maximum H‐eigenvalues of large‐size Laplacian tensors of hyperstars and hypertrees, where the algorithm can be up to 13 times faster than the state‐of‐the‐art numerical method introduced by Ng, Qi, and Zhou in 2009. Finally, we also show that the proposed algorithm can be used to test the copositivity of a multivariate form associated with symmetric extended Z‐tensors, whose order may be even or odd.  相似文献   

10.
We study both H and E/Z-eigenvalues of the adjacency tensor of a uniform multi-hypergraph and give conditions for which the largest positive H or Z-eigenvalue corresponds to a strictly positive eigenvector. We also investigate when the E-spectrum of the adjacency tensor is symmetric.  相似文献   

11.
It is well known that if P is a nonnegative matrix, then its spectral radius is an eigenvalue of P (Perron-Frobenius theorem). In this paper it is shown that if P is an n × n nonnegative matrix and it commutes with a nonnegative symmetric involution when n=4m+3, then (1) P has at least two real eigenvalues if n=4m or 4m + 2, (2) P has at least one real eigenvalue if n=4m+1, and (3) P has at least three real eigenvalues if n=4m+3, where m is a nonnegative integer and n ? 1. Examples are given to show that these results are the best possible, and nonnegative symmetric involutions are classified.  相似文献   

12.
This paper discusses the computation of real \(\mathtt {Z}\)-eigenvalues and \(\mathtt {H}\)-eigenvalues of nonsymmetric tensors. A generic nonsymmetric tensor has finitely many Z-eigenvalues, while there may be infinitely many ones for special tensors. The number of \(\mathtt {H}\)-eigenvalues is finite for all tensors. We propose Lasserre type semidefinite relaxation methods for computing such eigenvalues. For every tensor that has finitely many real \(\mathtt {Z}\)-eigenvalues, we can compute all of them; each of them can be computed by solving a finite sequence of semidefinite relaxations. For every tensor, we can compute all its real \(\mathtt {H}\)-eigenvalues; each of them can be computed by solving a finite sequence of semidefinite relaxations.  相似文献   

13.
In this paper, we propose a fast algorithm for computing the spectral radii of symmetric nonnegative tensors. In particular, by this proposed algorithm, we are able to obtain the spectral radii of weakly reducible symmetric nonnegative tensors without requiring the partition of the tensors. As we know, it is very costly to determine the partition for large‐sized weakly reducible tensors. Numerical results are reported to show that the proposed algorithm is efficient and also able to compute the spectral radii of large‐sized tensors. As an application, we present an algorithm for testing the positive definiteness of Z‐tensors. By this algorithm, it is guaranteed to determine the positive definiteness for any Z‐tensor.  相似文献   

14.
Let A be a real symmetric n × n matrix of rank k, and suppose that A = BB′ for some real n × m matrix B with nonnegative entries (for some m). (Such an A is called completely positive.) It is shown that such a B exists with m?12k(k+1)?N, where 2N is the maximal number of (off-diagonal) entries which equal zero in a nonsingular principal submatrix of A. An example is given where the least m which works is (k+1)24 (k odd),k(k+2)4 (k even).  相似文献   

15.
Let m,m′, n be positive integers such that mm′. Let A be an mth order n-dimensional tensor, and let ? be an m′th order n-dimensional tensor. λ ∈ ? is called a ?-eigenvalue of A if A xm?1 = λ?xm′?1 and ?xm′= 1 for some x ∈ ?n\{0}. In this paper, we propose a linear homotopy method for solving this eigenproblem. We prove that the method finds all isolated ?-eigenpairs. Moreover, it is easy to implement. Numerical results are provided to show the efficiency of the proposed method.  相似文献   

16.
Let Mnbe an n-dimensional submanifold without umbilical points in the(n + 1)-dimensional unit sphere Sn+1.Four basic invariants of Mnunder the Moebius transformation group of Sn+1are a 1-form Φ called moebius form,a symmetric(0,2) tensor A called Blaschke tensor,a symmetric(0,2) tensor B called Moebius second fundamental form and a positive definite(0,2) tensor g called Moebius metric.A symmetric(0,2) tensor D = A + μB called para-Blaschke tensor,where μ is constant,is also an Moebius invariant.We call the para-Blaschke tensor is isotropic if there exists a function λ such that D = λg.One of the basic questions in Moebius geometry is to classify the hypersurfaces with isotropic para-Blaschke tensor.When λ is not constant,all hypersurfaces with isotropic para-Blaschke tensor are explicitly expressed in this paper.  相似文献   

17.
We consider the set of m×n nonnegative real matrices and define the nonnegative rank of a matrix A to be the minimum k such that A=BC where B is m×k and C is k×n. Given that the real rank of A is j for some j, we give bounds on the nonnegative rank of A and A2.  相似文献   

18.
Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results.  相似文献   

19.
We define equivariant tensors for every non-negative integer p and every Weil algebra A and establish a one-to-one correspondence between the equivariant tensors and linear natural operators lifting skew-symmetric tensor fields of type (p, 0) on an n-dimensional manifold M to tensor fields of type (p, 0) on T A M if 1 ≤ pn. Moreover, we determine explicitly the equivariant tensors for the Weil algebras , where k and r are non-negative integers.  相似文献   

20.
In this article, the index of imprimitivity of an irreducible nonnegative matrix in the famous PerronFrobenius theorem is studied within a more general framework, both in a more general tensor setting and in a more natural spectral symmetry perspective. A k-th order tensor has symmetric spectrum if the set of eigenvalues is symmetric under a group action with the group being a subgroup of the multiplicative group of k-th roots of unity. A sufficient condition, in terms of linear equations over the quotient ring, for a tensor possessing symmetric spectrum is given, which becomes also necessary when the tensor is nonnegative, symmetric and weakly irreducible, or an irreducible nonnegative matrix. Moreover, it is shown that for a weakly irreducible nonnegative tensor, the spectral symmetries are the same when either counting or ignoring multiplicities of the eigenvalues. In particular, the spectral symmetry(index of imprimitivity) of an irreducible nonnegative Sylvester matrix is completely resolved via characterizations with the indices of its positive entries. It is shown that the spectrum of an irreducible nonnegative Sylvester matrix can only be 1-symmetric or 2-symmetric, and the exact situations are fully described. With this at hand, the spectral symmetry of a nonnegative two-dimensional symmetric tensor with arbitrary order is also completely characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号