首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
An analytical model for plasma flow around a spherical particle has been developed using a two-temperature chemical nonequilibrium approach that includes rarefaction and particle-charging effects. The contribution of each component of the plasma to the heat and momentum transfer to injected particulates is studied by simulating the plasma flow around a sphere for conditions typical of thermal spray processes at pressures from 80 mbar to 1 bar. A parametric study of the 80-mbar case is also presented for free-stream velocities in the 0-3000 m/s range and free-stream temperatures in the 8000-12000 K range for both ionization equilibrium and nonequilibrium. The results demonstrate that there are departures from kinetic and ionization equilibrium in the plasma around a particle, and that heat transfer to a particle can be enhanced by the increased ion flux to the particle surface when the surrounding plasma is in ionization nonequilibrium  相似文献   

2.
陈福振  强洪夫  高巍然 《物理学报》2014,63(23):230206-230206
在气粒两相流动问题中,颗粒间以及气体与颗粒间的传热问题不可忽略.光滑离散颗粒流体动力学(SDPH)模型作为一种新的求解气粒两相流动问题的方法,已经成功应用于模拟风沙运动等问题.在此基础上,提出了SDPH方法的热传导模型,模拟了气粒两相流动问题中的热传导过程以及颗粒蒸发过程.首先引入各相的能量方程,利用有限差分与光滑粒子流体动力学一阶导数相结合的方法,处理各相内部热传导项中的二阶导数问题,基于气粒两相间温度差及对流换热系数计算颗粒与气体间的热传导量,推导得到了含热传导模型的气粒两相流SDPH计算方程组,模拟计算了圆盘形颗粒团算例及鼓泡流化床内部热传导算例,并与双流体模型计算结果进行对比,结果基本符合;其次利用离散液滴模型中的颗粒蒸发传质传热定律计算颗粒的蒸发过程,数值模拟了颗粒射流蒸发过程,并与离散颗粒模型结果进行对比,两者符合得较好,验证了该方法的准确性及实用性.  相似文献   

3.
The effect of electromagnetic radiation on the dynamics of arbitrarily shaped cosmic dust particles is investigated. The paper concentrates on the motion of dust grains near commensurability resonances with a planet—mean-motion resonances—and possible capture of the grains in the resonances. A particle is in resonance with a planet when the ratio of the mean motions of the two objects is a ratio of two small integers.

The most fundamental properties of the orbital evolution of spherical dust particles in the mean-motion resonances are shortly rederived: the solar wind effect is also included and the existing result is improved. The results for spherical particles are compared with the detailed numerical calculations for nonspherical particles. It is shown that the fundamental results valid for spherical grains do not hold, in general, for nonspherical particles. While spherical particles are always characterized by the secular decrease of the semi-major axes near mean-motion resonances, this may not be true for nonspherical particles. Nonspherical grains may exhibit an increase of the semi-major axes before capturing in the mean-motion resonances. This is caused by the effect of electromagnetic radiation on nonspherical dust grains. The eccentricities of spherical particles in the exterior resonances approach a limiting value, but nonspherical grains may not follow this behaviour. The interior resonances are characterized by a systematic decrease of eccentricity for spheres, but various behaviours exist in the case of irregularly shaped particles.

The motion of a nonspherical dust particle under the action of electromagnetic radiation may be characterized by a small change of the semi-major axis during a long-time interval, but the particle is not captured in any mean-motion resonance. This kind of motion does not exist for spherical grains.  相似文献   


4.
Equation of motion of realistically shaped particle in the circumstellar dust shell is derived under the action of electromagnetic radiation including the gravity of central body. The effect is considered to the accuracy , where is particle's velocity in a given inertial frame of reference and c is the speed of light. Equation of motion is expressed in terms of particle's optical properties, standardly used in optics for stationary particles.

Application to nonspherical dust particle in the Solar System with initial orbital elements identical to those of comet Encke is presented as an example. It is shown that the motion of nonspherical submicron- and small micron-sized particle may significantly differ from the motion for spherical particle of an identical volume.  相似文献   


5.
The single-scattering properties of sand/dust particles assumed to be ellipsoids are computed from the discrete dipole approximation (DDA) method at microwave frequencies 6.9-89.0 GHz in comparison with the corresponding Lorenz-Mie solutions. It is found that the single-scattering properties of sand particles are strongly sensitive to the shapes of the particles. The bulk scattering properties of sandstorms composed of spherical or nonspherical particles are investigated by averaging the single-scattering properties of these particles over log-normal particle size distributions. Furthermore, a vector radiative transfer model is used to simulate microwave radiances. The microwave brightness temperatures in the vertical polarization model are essentially not sensitive to sand particle habit, whereas microwave brightness temperature polarization differences are influenced by particle habit. It is shown that microwave brightness temperatures and brightness temperature polarization differences may be useful for estimating the effective particle sizes and mass loading of sandstorms.  相似文献   

6.
作为一种高效、 局域化且高度可控的纳米热源, 金纳米棒越来越多的应用于肿瘤的光热治疗之中。 为探讨微观尺度下金纳米棒的产热与传热机理, 以及颗粒之间耦合作用对体系光热效应的影响。 本文运用基于有限元的 COMSOL 软件, 建立了金纳米棒光热耦合的三维模型, 分析了排布方式和颗粒间距等因素对纳米棒光学性质和光热响应的影响。 研究表明, 不同排布方式下近距离耦合颗粒之间的耦合强度随间距的增大呈指数衰减, 在一定间距范围内这种衰减行为可以被等离子体尺度方程描述; 单体共振波长照射下, 颗粒间的聚集影响光热治疗的效果, 在颗粒耦合作用范围内, 分散性越高, 体系加热效果越好。 本文研究模型及所得结论可为金纳米棒的产热与传热机理及肿瘤的光热治疗提供参考与指导。  相似文献   

7.
Forced convection heat transfer from a helically coiled heat exchanger embedded in a packed bed of spherical glass particles was investigated experimentally. With dry air at ambient pressure and temperature as a flowing fluid, the effect of particle size, helically coiled heat exchanger diameter, and position was studied for a wide range of Reynolds numbers. It was found that the particle diameter, the helically coiled heat exchanger diameter and position, and the air velocity are of great influence on the convective heat transfer between the helically coiled heat exchanger and air. Results indicated that the heat transfer coefficient increased with increasing the air velocity, increasing helically coiled heat exchanger diameter, and decreasing the particle size. The highest heat transfer coefficients were obtained with the packed-bed particle size of 16 mm and heat exchanger coil diameter of 9.525 mm (1/4 inch) at a Reynolds number range of 1,536 to 4,134 for all used coil positions in the conducted tests. A dimensionless correlation was proposed for Nusselt number as a function of Reynolds number, particle size, coil size, and coil position.  相似文献   

8.
由于成本低,运行稳定,重力驱动移动床在高温固体散料余热回收领域应用潜力较大。然而,相关强化传热技术目前仍待完善。本文基于离散单元法,对颗粒流外掠翅片单元的流动换热特性进行了数值研究。研究表明:通过翅片增加换热面,可以显著提高传热量,但不同翅片单元外颗粒流传热特性不同。颗粒流与不同表面的换热,由颗粒更新、颗粒接触、颗粒竞争掺混以及表面面积共同决定。总体来说,在迎流区,倾斜平表面能扩大面积并确保颗粒更新,更有利于换热增强。而对于背流区,竞争掺混与颗粒接触的影响更大,采用圆弧表面更有优势。  相似文献   

9.
Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Though many attempts have been made to investigate the abnormal high thermal conductivity of nanofluids, the existing models cannot precisely predict the same. An attempt has been made to develop a model for predicting the thermal conductivity of different types of nanofluids. The model presented here is derived based on the fact that thermal conductivity of nanofluids depends on thermal conductivity of particle and fluid as well as micro-convective heat transfer due to Brownian motion of nanoparticles. Novelty of the article lies in giving a unique equation which predicts thermal conductivity of nanofluids for different concentrations and particle sizes which also correctly predicts the trends observed in experimental data over a wide range of particle sizes, temperatures, and particle concentrations.  相似文献   

10.
双温度通道电弧等离子体二维数值模拟   总被引:1,自引:0,他引:1  
本文对圆形通道内双温度等离子体的传热与流动特性进行了二维数值模拟,研究中假定体系处于局域化学平衡态,但电子温度不等于重粒子温度,需分别用各自的守恒方程求解.采用数值实验的方法对电子-重粒子非弹性碰撞过程进行了研究,计算结果表明,数值模拟中对非弹性碰撞过程不同的处理方法(α的不同取值)会影响计算预测的等离子体特性.α的合适数值,需要在今后的研究工作中进一步将计算结果与实验测量结果比较来加以确定。  相似文献   

11.
以水为工质,在热管工况(真空减压条件)下对具有不同颗粒种类(电解粉和水雾粉)、颗粒直径和多孔芯厚度的铜粉颗粒烧结多孔芯进行了蒸发/沸腾换热实验研究。结果表明:随着热流密度的上升,换热系数先上升后下降;在孔隙率一定的情况下,存在最优多孔芯厚度使得蒸发/沸腾换热性能最佳;当多孔芯厚度一定时,在热流密度不是很大时存在着最优孔...  相似文献   

12.
The present study investigated fluid flow and natural convection heat transfer in an enclosure embedded with isothermal cylinder. The purpose was to simulate the three-dimensional natural convection by thermal lattice Boltzmann method based on the D3Q19 model. The effects of suspended nanoparticles on the fluid flow and heat transfer analysis have been investigated for different parameters such as particle volume fraction, particle diameters, and geometry aspect ratio. It is seen that flow behaviors and the average rate of heat transfer in terms of the Nusselt number (Nu) are effectively changed with different controlling parameters such as particle volume fraction (5 % ≤ φ ≤ 10 %), particle diameter (d p = 10 nm to 30 nm) and aspect ratio (0.5 ≤ AR ≤ 2) with fixed Rayleigh number, Ra = 105. The present results give a good approximation for choosing an effective parameter to design a thermal system.  相似文献   

13.
To take the local thermal nonequilibrium between particles and the nonuniformity of temperature within a single particle into account, a concept of multi-scale modeling of radiative transfer is presented. Particles are considered to interact with thermal radiation on both micro-scale of a single particle and meso-scale of a particle cell to produce radiative source term at the local or meso-scale level of a particle cell for the modeling of radiative transfer at macro-scale of overall particle system. The accurate modeling of radiative transfer in particle polydispersions are related to the modeling of radiative transfer in following three different scales: macro-scale of the overall particle system, meso-scale of particle cell, and micro-scale of single particle. Two examples are taken to show the necessity of multi-scale modeling for radiative transfer in particle polydispersions. The results show that omitting local thermal nonequilibrium and nonuniformity will result in errors for the solution of radiative heat transfer to some extent, and the multi-scale modeling is necessary for the radiative transfer in particle system with large local thermal nonequilibrium and nonuniformity.  相似文献   

14.
气粒混合物辐射问题具有全场性、非灰性、耦合性等特点,准确预估高温燃气/粒子非灰辐射特性是非常重要的。本文将合并宽窄谱带K分布模础(CWNBCK)与离散坐标法(DOM)结合,开展了非灰气粒混合物辐射换热问题的模拟工作,分别验证了一维和三维情况下应用该模型的准确性,给出不同工况下的热流源项、壁面热流或辐射热流等。结果表明:该模型能够给出与SNB模型精度基本相同的结果,考虑其计算效率的提高,可以在工程实际中应用该模型计算非灰气粒混合物辐射换热。  相似文献   

15.
Pool boiling heat transfer using nanofluids (which are suspensions of nano-sized particles in a base fluid) has been a subject of many investigations and incoherent results have been reported in literature regarding the same. In the past, experiments were conducted in nucleate pool boiling with varying parameters such as particle size, concentration, surface roughness etc. and all sort of results ranging from heat transfer enhancement, deterioration and no effect were reported. This work tries to segregate a survey on pool boiling of nanofluids with respect to particle concentration. This is due to the fact that a major drift in heat transfer behavior is observed at higher and lower particle concentration. But upon deep perusal it has been found that deterioration in heat transfer coefficient are mainly observed at higher particle concentrations (4–16% by weight) and enhancements mainly at lower particle concentrations (0.32–1.25% by weight). Moreover, the relative size of the particle with respect to the surface roughness of the heating surface seems to play an important role in understanding the boiling behaviour. Also, recent works have reported that change in ‘surface wetting’ of the heating surface due to nanofluids and the formation of a porous layer modifiying nucleation site density can be of importance in predicting nucleate pool boiling characteristics of nanofluids. In the present paper, attempts are made to make systematic analysis of results in literature and try to bring out a common understanding of the results in literature.  相似文献   

16.
A new approach to study the particle velocity in a thermal plasma in relation to input parameters (power, gas flow rate, injection velocity of the particle and particle size) and nozzle dimensions (nozzle length and diameter) has been made. Injected particle's temperature and thermal history were calculated for particles of three different materials (alumina, tungsten and graphite) in argon plasma. Allowable powder feed rate was calculated for the particles. Heat transfer per particle injected in to the plasma is reported. Liquid fraction of the particle after it reached the melting point is also reported. Particle velocity is found to increase with increase in power, gas flow rate and injection velocity and decrease with increase in particle size, nozzle length and nozzle diameter. Thermal histories of the particles in relation to the plasma temperature and particle diameter are presented. Particle's residence time is found to increase with increase in diameter of the particle. Allowable powder feed rate for complete melting of the particle is higher at higher percentage utilisation of the plasma power. Powder feed rate is seen to decrease with increase in particle size and it is higher for tungsten and lower for graphite particle. Heat transfer rate from plasma to particle is seen to decrease with increase in time and the same is higher for plasmas of higher temperature and smaller sized particle. Received 4 May 2000 and Received in final form 15 March 2001  相似文献   

17.
The radiative heat transfer between two concentric spheres separated by a two-phase mixture of non-gray gas and a cloud of particles is investigated by using the combined finite-volume and discrete-ordinates method, named modified discrete-ordinates method (MDOM), which integrates the radiative transfer equation (RTE) over a control volume and a control angle simultaneously like in the finite-volume method (FVM) and treats the angular derivative terms due to spherical geometry as the conventional discrete-ordinates method (DOM). The radiative properties involving non-gray gas and particle behavior are modeled by using the extended weighted sum of gray gases model (WSGGM) with particles. Mathematical formulation and final discretization equations for the RTE are introduced by considering the behavior of a two-phase mixture of non-gray gas and particles in a spherically symmetric concentric enclosure. The present approach is validated by comparing with the results of previous works including gray and non-gray radiative heat transfer. Finally, a detailed investigation of the radiative heat transfer with non-gray gases and/or a two-phase mixture is conducted to examine the dependence of the radiative heat transfer upon temperature ratio between inner and outer spherical enclosure, particle concentration, and particle temperature.  相似文献   

18.
Research on nanofluids has progressed rapidly since their enhanced thermal conductivities were identified about a decade ago. For boiling heat transfer with nanofluids, however, many contradictory results have been reported, which cannot be explained by conventional theories developed for pure fluids. Recent progress in colloidal science shows that the presence of nanoparticles could enhance the spreading and wettability of base fluids through a long-range structural disjoining pressure. This article explores theoretically the influence of structural disjoining pressure to the nucleate boiling heat transfer through a four-zoned microlayer evaporation model. The influence of particle size, particle concentration, and heat flux on the structural disjoining pressure and the interfacial shape of the microlayer are investigated. The calculated equilibrium interfacial shape shows that the meniscus is displaced toward the vapor phase in the presence of nanoparticles, an implication of enhanced wettability. Such an improved wettability affects the number of active nucleate sites and bubble dynamics significantly, which could be one of the important parameters that is responsible for the controversy of boiling heat transfer with nanofluids reported in the literature.  相似文献   

19.
20.
The diffusive-kinetic model of porous carbon particles gasification is developed. The model considers the processes of heat and mass transfer both inside the porous particle and above it. Analysis of the model shows that heat and mass transfer have an influence to the gasification process to a marked degree. Gasification of carbon particle by carbon dioxide is impossible if particle temperature is lower about 850 K because concentration of carbon dioxide at the particle surface becomes lower than its equilibrium concentration. The rate of the carbon particle gasification is determined as a function of the porous particle internal surface area for different pressures and furnace temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号