首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 856 毫秒
1.
肖茹 《高分子科学》2017,35(8):1020-1034
Polyacrylonitrile (PAN) polymers with different compositions were prepared by an efficient aqueous free-radical polymerization technique.Thermal properties of polyacrylonitrile homopolymer (PAN),poly(acrylonitrile/itaconic acid) [P(AN/IA)] and poly(acrylonitrile/itaconic acid/acrylamide) [P(AN/IA/AM)] were studied by Fourier transform infrared spectroscopy,X-ray diffraction,differential scanning calorimetry and thermogravimetry in detail.It was found that AM had the ability to initiate and accelerate thermal oxidative stabilization process,which was confirmed by the lower initiation temperature and broader exothermic peak in P(AN/IA/AM) as compared with that in P(AN/IA) and PAN.The intensity of heat releasing during the thermal treatment was relaxed due to the presence of two separated exothermic peaks.Accompanied by DSC analysis and calculation of the apparent activation energy of cyclization reaction,two peaks were assigned to the ionic and free radical induction mechanisms,respectively.The higher rate constant in P(AN/IA/AM) indicated that the ionic mechanism actually had a kinetic advantage at promoting thermal stability over the free radical mechanism.This study clearly show that the synthesized P(AN/IA/AM) terpolymers possess larger room to adjust manufacture parameters to fabricate high performance of PAN-based carbon fibers.  相似文献   

2.
Thermal stabilization of polyacrylonitrile (PAN) fibers is an important step in production of carbon fibers. Understanding the onset and temperature range of the stabilization reactions is a key for adjusting processing parameters such as tension, stretching, etc. However, stabilization reactions are very complex and overlap. In order to separate the stabilization reactions, we combined the results of FTIR (Fourier Transform Infrared Spectroscopy), DSC (Differential Scanning Calorimetry), TGA (Thermogravimetry analysis), TMA (Thermomechanical analysis), and densitometry. It was shown that combination of DSC and TGA allowed separation of reactions regardless of the composition of initial PAN fibers. FTIR, TMA and densitometry results verified the validity of proposed method. Accordingly, three special and commercial grade PAN fibers with different chemical composition were studied. FTIR results indicated that during thermal stabilization of PAN fibers chemical reactions including cyclization, oxidation and dehydrogenation occurred in the fibers and a ladder polymer was formed. According to DSC and TGA curves, initiation temperature, temperature range and order of occurrence of these reactions were a function of chemical composition of initial fibers. In fibers containing itaconic acid plus methyl acrylate comonomers, oxidation reactions already started at 175 °C. Cyclization started above 210 °C, and reactions occurring above 250 °C were mainly dehydrogenation. In fibers containing only itaconic acid cyclization initiated above 210 °C, dehydrogenation started after 242 °C and oxidation occurred only after 284 °C. In fibers containing vinyl acetate comonomers, the initial reactions above 240 °C were attributed to cyclization. Oxidation occurred below 290 °C and dehydrogenation started above 290 °C.  相似文献   

3.
NiSO_4改性对聚丙烯腈原丝及其碳纤维结构与性能的影响   总被引:10,自引:1,他引:9  
碳纤维具有高比强度、高比模量、导电、耐热、自润滑等优异的综合性能,在纤维增强复合材料中得到了广泛的应用.可制备碳纤维的前驱体有人造丝、沥青、聚丙烯腈纤维、木质素、聚乙烯纤维、聚苯并噻唑(PBO)纤维等.但大多数高强碳纤维目前仍然是由聚丙烯腈纤维制备的,同时,许多工作都集中在更进一步提高碳纤维的机械性能.特别是在我国, 碳纤维质量与某些发达国家相比,还有较大的差距,急需解决的问题就是如何尽快研制出高力学性能的碳纤维.采用氨基硅氧烷、脂肪族羧酸[1]、CuCl[2]、KMnO 4[3]、CoCl2[4]等有机或无机化学试剂对聚丙烯腈原丝进行化学处理, 以改进最终碳纤维的结构与性能是一种有效的方法.国内在这方面的研究还很少.文献[1 ~4]中所采用的方法都是利用商业聚丙烯腈原丝在碳化前进行洗油、浸渍、洗涤烘干处理 ,增加了碳纤维制备的工序,同时,原丝损伤较大,在连续生产中难以适用.我们在原丝连续制备的同时采用NiSO4溶液浸渍处理聚丙烯腈纤维,本文主要研究了采用NiSO4浸渍改性后聚丙烯腈原丝及其碳纤维的结构与性能.研究表明,采用NiSO4在线浸渍改性聚丙烯腈原丝,生产工艺简单,且能有效地改进最终碳纤维的结构与性能.  相似文献   

4.
The terpolymerization of acrylonitrile, methyl acrylate, and itaconic acid mediated by a reversible addition-fragmentation chain transfer agent, dibenzyl trithiocarbonate, and initiated by AIBN at 80°C, potassium persulfate at 45–55°C, and radiolysis at 20°C is studied. In all the cases, polymerization proceeds via the pseudoliving mechanism, which is preserved up to ultimately high monomer conversions (80–90%). According to FTIR ATR and NMR spectroscopy, all the synthesized terpolymers are characterized by close monomer compositions and their degree of branching is too low to be detected spectroscopically. However, the thermal behaviors of terpolymers obtained by polymerizations at various temperatures are different, namely, the lower the temperature of terpolymer synthesis, the slower the thermooxidative stabilization processes occurring in it.  相似文献   

5.
A study on the thermo‐oxidative stabilization (cyclization) of polyacrylonitrile (PAN) terpolymers using dynamic mechanical thermal analysis (DMTA) is reported in this article. When the changes in viscoelastic properties were monitored in a rectangular tension mode, besides the tan δ peak characteristic of the glass transition observed below 200°C, the copolymer and the terpolymer displayed a second peak above 200°C due to the cyclization leading to the formation of ladder structures. The initiation temperature of the cyclization process as well as the peak temperature is found to depend on the acid value and the composition of the precursor polymer. The results presented show that monitoring the changes in viscoelastic properties during cyclization provides insight into the material properties as a result of the chemical changes that are taking place. These observations were confirmed by structural characterization using IR spectroscopy, and the observed chemical changes agree with the literature studies, as due to the thermal cyclization process. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The thermal stability of the polymer is of great significance in paper, ceramics and oil industry1. Conventional polymers such as polyanionic cellulose can not meet high temperature limitations2-4. Aggour5-6 and Collette7 etc. have conducted extensive research on synthesis and characterizations of the copolymer or terpolymer containing 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS). Till now, very few research works have been reported on the terpolymer of itaconic acid (IA), acrylamid…  相似文献   

7.
Temperature‐ and pH‐sensitive copolymers and terpolymers of N‐isopropylacrylamide (NIPAAm) with itaconic acid (IA), monomethyl itaconate (MMeI), monobutyl itaconate (MBuI), monooctyl itaconate (MOcI), monocetyl itaconate (MCeI), and dimethyl itaconate (DMI) were prepared by free radical solution polymerization method. The dependence of coil‐to‐globule transition on pH and composition, molecular structures, and reactivities of monoalkyl itaconates, molecular weight distributions, and glass transition temperatures of copolymers and terpolymers were investigated using FT‐IR and UV–visible spectroscopic techniques, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and acid–base titration methods. The temperature‐/pH‐dependent coil‐to‐globule transition measurements showed that, upon increasing the content and length of alkyl chains, the lower critical solution temperatures (LCSTs) were shifted to higher temperatures. This meant that with increase in the length of hydrophobic alkyl chain in the monoitaconates intramolecular intreactions between the carboxyl groups were suppressed and LCSTs increased. The aqueous solution behaviors of NIPAAm/IA/DMI terpolymers also revealed that, even if the terpolymer hydrophobicity is increased by adding DMI units, the presence of IA units overcame the decrease in hydrophilicity of the terpolymers. The presence of DMI units in the terpolymers balanced the hydrophilic character of IA. DSC results supported the ones obtained from the pH‐dependent coil‐to‐globule transition measurements. An increase in both the chain length of alkyl groups attached to the monoitaconates and the contents of the mono‐ and dialkyl itaconates in the copolymers and terpolymers decreased the Tgs. In the case of NIPAAm/IA and NIPAAm/MMeI copolymers, the presence of the carboxyl groups forming hydrogen bonds increased the Tg, while the monoalkyl and dialkyl itaconates such as MBuI, MOcI, MCeI and DMI lead to a decrease in Tg of copolymers and terpolymers because of the suppression of intramolecular interactions (resulting from the ? COOH and ? COO? groups) through the longer alkyl spacers. The dependence of the thermosensitivity of these NIPAAm copolymers and terpolymers on different conditions of pH, and the nature and content of comonomers suggests that they can be useful in biotechnology and drug delivery applications which involve small changes in pH and temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The terpolymerization of ethyl methacrylate (EMA), N‐phenylmaleimide (NPMI), and itaconic acid (IA) was investigated. The terpolymer composition was determined by elemental analysis and 1H NMR spectroscopy. The reactivity ratios of the three binary systems (EMA/NPMI, EMA/IA, and NPMI/IA) were calculated and used for the calculation of the terpolymer composition with the terminal model equations. A comparison between the experimental and theoretical compositions was made. The rate of the terpolymerization process was measured dilatometrically at two total monomer concentrations; this was done to establish the presence of intermolecular interactions between the investigated monomers. The thermal analysis of the obtained terpolymers was performed by thermogravimetric analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3180–3187, 2003  相似文献   

9.
The properties of ethylene copolymers, terpolymers and multipolymers prepared with even and uneven carbon number linear and branched α-olefins were compared. The most likely microstructures of ethylene/linear α-olefin copolymers was assigned by considering co-unit bulkiness, average crystallizable sequence lengths and thermal properties. The higher α-olefins were found to be more effective at decreasing density, but peak melting temperatures were higher. In terpolymers where lower α-olefins such as 1-butene and 1-pentene were used as comonomers, density was decreased more than the mathematical average expected from the ratio of comonomers in the terpolymers. Peak melting temperatures were also lower. Based on NMR evidence and the microstructures of the different copolymers the rationale for this occurrence could be ascribed to decreased clustering for these terpolymers. Branched α-olefins produced ethylene co- and terpolymers with significantly decreased densities as compared to the linear α-olefins. Impact strength of these polymers was also substantially higher, even at low comonomer content. Thermal evidence indicates that the microstructure of the co- and terpolymers containing branched α-olefins are very similar to that of the copolymers prepared with linear α-olefins of the same carbon number.  相似文献   

10.
The structural evolution and thermal behavior of polyacrylonitrile (PAN) homopolymer and copolymer [P(AN-IA)] containing about 1.5 mol% itaconic acid (IA) during stabilization in air were studied by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetry (TG). A new parameter Es=A1595cm−1/A2243cm−1 was defined to evaluate the extent of stabilization. The kinetic parameters, viz. activation energy (Ea) and pre-exponential factor (A) of the stabilization reactions were calculated by Kissinger method and Ozawa method. FTIR analysis indicated that the cyclization of nitrile groups was initiated at a lower temperature by the IA comonomer and the stabilization proceeded at a more moderate pace in P(AN-IA) than in PAN, while an IA additive was found to be decomposed and failed to initiate the cyclization at a lower temperature. The improvement effect of IA comonomer on the stabilization reactions was further confirmed by the dynamic thermal analysis and kinetic study.  相似文献   

11.
Abstract

The best graft ratio of the light-curable N-vinylpyrrolidone (NVP) modified terpolymers (LC NVPM TPs) with the molar ratio of 8:2:1 (acrylic acid:itaconic acid:NVP) and the optimal formulation for this light-curable glass-ionomer cement, based on the best graft ratio, were determined. Statistical models were utilized to predict the optimal formulations. The terpolymer was prepared using a free-radical polymerization reaction. The LC NVPM TPs were produced by grafting 2-isocyanatoethyl methacrylate (IEM) onto the terpolymer. Cements were formed by both light-curing and the reaction with glass particles. Compressive strength was used as the basic screening property to find the optimal formulation. Diametral tensile and flexural strengths were also used to evaluate the mechanical properties. The strength values were recorded on the specimens conditioned in distilled water at 37&C for 24 hours or 7 days. The best graft ratio for IEM in this system was 15% of the terpolymer by a molar ratio. The optimal formulation was found to be at the weight ratio of 55:15:30 [LC NVPM TP:2-hydroxyethyl methacrylate (HEMA): H2O]. Stress-strain curves showed that a relatively high amount of water in the formulation led to higher elastic modulus and proportional limit and lower malleability, whereas a relatively high amount of HEMA gave the opposite results. The light-curable NVP modified glass-ionomer cements showed statistically significantly higher values in compressive, diametral tensile, and flexural strengths than the commercial VitremerTM.  相似文献   

12.
衣康酸对聚丙烯腈原丝结构和性能的影响   总被引:8,自引:1,他引:7  
控制单体配比 ,采用丙烯腈 (AN)与衣康酸 (IA)自由基溶液共聚 ,以偶氮二异丁腈为引发剂在溶剂二甲基亚砜中合成了聚丙烯腈原丝纺丝溶液 ,并纺制了碳纤维前驱体聚丙烯腈原丝 .通过元素分析、IR、DSC、13 C NMR等手段 ,讨论了共聚单体IA对共聚反应及聚丙烯腈原丝结构和性能的影响 .共聚反应时 ,共聚单体IA的加入量控制在AN/IA =98/2 (W/W )较合适 .利用IR谱 ,可定量分析IA在共聚中的摩尔分数 .经13 C NMR分析 ,随着共聚单体IR在共聚物中的摩尔分数的增加 ,共聚物的全同规整度增加 ,达到一定值后又呈下降趋势 .共聚单体IA能在较低温度时引发聚丙烯腈原丝的氧化、环化放热反应 ,且能减缓放热效应 .  相似文献   

13.
欧阳琴  程璐  王浩静  孙予罕 《化学学报》2007,65(24):2941-2946
应用差示扫描量热法(DSC)研究了衣康酸(IA)、气氛、升温速率对丙烯腈-衣康酸共聚物[P(AN-IA)]热稳定化的影响. IA能够显著降低放热峰起始温度、放热量和放热速率. P(AN-IA)共聚物的放热峰起始温度受气氛影响不大, 却随着IA含量的增加而明显降低, 表明在热稳定化过程中它可能首先以离子机理发生氰基环化反应, 再发生氧化反应. 提高升温速率会导致放热峰向高温偏移和放热速率加快. 采用Kissinger法计算了不同IA含量共聚物的热稳定化活化能, 结果表明IA可以有效降低活化能.  相似文献   

14.
In order to improve the stabilization and spinnability of polyacrylonitrile, a bifunctional comonomer containing both ester and amide groups was synthesized to prepare poly(acrylonitrile-co-3- aminocarbonyl-3-butenoic acid methyl ester) [P(AN-co-ABM)] copolymers used as the carbon fiber precursor instead of poly(acrylonitrile-acrylamide-methyl acrylate) [P(AN-AM-MA)] terpolymer. The differential scanning calorimetry and thermogravimetry results show that the stabilization of P(AN-co- ABM) have been remarkably improved by ABM compared with P(AN-AM-MA) terpolymer, such as lower initiation temperature, broadened exothermic peak and smaller activation energy. Moreover, the spinnability of P(AN-co-ABM) is also improved by ABM due to the lubrication of ester groups in ABM. This study clearly shows that P(AN-co-ABM) copolymer is a better material for use as a carbon fiber precursor than P(AN-AM-MA) terpolymer.  相似文献   

15.
This paper examines the polymerization of acrylonitrile to poly(acrylonitrile)(PAN), and its cyclization, in bulk form and using N,N-dimethylformamide (DMF) as solvent in which both monomer and polymer are soluble. Thermal analysis of the resultant products after polymerization has been performed by DSC and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). Scanning electron microscopy has been used to study the morphology of the resultant products and after thermal treatments. The DSC thermal curve of PAN-DMF sample is quite different from the PAN bulk sample, showing a single sharp exothermic peak associated with nitrile group polymerization (cyclization) of PAN at lower temperature (240°C) than that of bulk PAN sample (314°C). Cyclization of PAN was confirmed by IR spectroscopy. It was found that the amide molecules are difficult to eliminate completely in the product obtained after the polymerization reaction, even after prolonged heating at 110°C, and remain occluded. The formation of a complex by dipolar bonding is also possible and it is discussed. It is concluded that the amount of heat evolved as well as the temperature interval over which it is released are influenced by the chemical processing of PAN when using DMF as solvent of both monomer and polymer. Pyrolysis of these PAN samples revealed the release of occluded molecules of DMF, and several compounds containing nitrogen produced from the thermal degradation processes. All these results are interesting to know the chemical processing of carbon fibres and activated carbon fibres from PAN modified precursors.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

16.
A series of terpolymers were synthesized by the chemical oxidative polymerization of m‐phenylenediamine (MPD), o‐anisidine (AS), and 2,3‐xylidine (XY) in hydrochloride aqueous medium. The yield, intrinsic viscosity, and solubility of the terpolymers were studied by changing the MPD/AS/XY molar ratio from 100/0/0 to 53/39/8 to 0/100/0. It was discovered that the MPD/AS/XY terpolymers exhibit a higher polymerization yield and better solubility than MPD/AS and MPD/XY bipolymers having the same MPD molar content. The as‐prepared MPD/AS/XY terpolymer bases were characterized by Fourier transform infrared, ultraviolet–visible, 1H NMR, and high‐resolution solid‐state 13C NMR spectroscopies; wide‐angle X‐ray diffraction; and thermogravimetry. The results suggested that the oxidative polymerization from MPD, AS, and XY is exothermic, and the resulting terpolymers are more easily soluble in some organic solvents than MPD homopolymer. The copolymer obtained was a real terpolymer containing MPD, AS, and XY units, and the actual MPD/AS/XY molar ratio calculated by solid‐state 13C NMR spectra of the polymers is very close to the feed ratio, although the AS content calculated on the basis of the 1H NMR spectrum of the soluble part of the polymer is higher than the feed AS content. The terpolymers and MPD homopolymer exhibit a higher polymerization yield and much higher intrinsic viscosity and are more amorphous than the AS homopolymer. At a fixed MPD content of 70 mol %, the terpolymers exhibit an increased thermostability and activation energy of the major degradation in nitrogen and air with an increasing AS content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3989–4000, 2001  相似文献   

17.
The influence of the ratio of the acrylamide, acrylonitrile, and 2-acrylamido-2-methylpropanesulfonic acid monomeric units in the terpolymer on its resistance to elevated temperatures and sensitivity to calcium salts was studied. The influence of the terpolymer composition on the chemical transformations occurring under the conditions of thermal and hydrothermal treatment was studied by TGA and IR spectroscopy. The degree of hydrolysis of the terpolymers influences their resistance to CaCl2. The resistance of the terpolymers to CaCl2 additions at their concentrations of up to 7 wt % is preserved at the content of 2-acrylamido-2-methylpropanesulfonic acid units higher than 20 mol %. The revealed features allow optimization of the structure of polymer systems used in drilling lubricants.  相似文献   

18.
In the carbon fiber production process from polyacrylonitrile (PAN), PAN precursor is heated first in air to secure stabilization in the succeeding carbonization process at higher temperature. The mechanism of the stabilization reaction and chemical structure of the stabilized PAN have been examined by x-ray photoelectron spectroscopy and elemental analysis. The stabilized PAN was determined to have a ladderlike structure consisting of 40% acridone ring, 30% naphtyridine ring, 20% hydronaphtyridine ring, and others. This structure well explains the stability of the polymer in the succeeding carbonization process on carbon fiber production with conjugated π-electron systems over the whole polymer chain and intermolecular hydrogen bonds. A comonomer addition to the precursor was found to accelerate the dehydrogenation reaction in the stabilization process.  相似文献   

19.
碳纳米纤维主要以聚丙烯腈(PAN)作为前驱体,通过纺丝、热稳定、碳化等后处理工艺制备而得。但是,PAN基纳米纤维取向度低、致密性差,热稳定后环化度低,碳化后导电性差等缺点阻碍其在高性能碳纳米纤维领域的发展。因此,在PAN分子链中引入衣康酸(IA),通过溶液聚合法合成了P(AN-co-IA)共聚物并通过静电纺丝法制备了P(AN-co-IA)基纳米纤维纱线。研究了纱线中纳米纤维的取向度、致密性以及在热稳定后的环化反应程度。重点研究了P(AN-co-IA)基碳纳米纤维纱线的线电阻、微观结构与碳化温度的关系。用扫描电子显微镜(SEM)对纱线进行形貌表征。用X-射线衍射仪(XRD)、傅里叶显微红外仪(FT-IR)、拉曼光谱仪(Raman)对纱线进行结构分析。结果表明,P(AN-co-IA)基原丝纱线的结构较致密,取向度较高。热稳定后的P(AN-co-IA)基纳米纤维的环化度高于PAN基纳米纤维。当碳化温度升至1100℃时,P(AN-co-IA)基碳纳米纤维纱线的线电阻明显降低至14Ω/cm。当碳化温度继续升高至1400℃,纱线的线电阻没有明显变化,但通过Raman光谱分析其无序碳结构会大幅增加。本文的研究结果为制备高取向性、高致密性和高电导性的碳纳米纤维纱线提供了一定的理论及实验基础。  相似文献   

20.
We report here the preparation of the two copolymers, itaconic acid-methyl methacrylate and itaconic acid-acrylamide, in different ratios using microwave irradiation in the presence of azobisisobutyronitrile (AIBN) as initiator and 2-butanone as a solvent. All the prepared copolymers were characterized by different techniques; FT-IR, thermal analysis and elemental microanalysis. The thermal stability property of the prepared copolymers correlated with the changing of the itaconic acid ratio, as the ratio of itaconic acid increased, the crystallinity of the copolymer decreases. The itaconic acid-based copolymers also showed a good scavenging behavior in alkaline media for Cu (II) and Pb (II). The chelation behavior of both Cu (II) and Pb (II) complexes were checked using FT-IR, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号