首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a 2-approximation algorithm for a facility location problem with stochastic demands. At open facilities, inventory is kept such that arriving requests find a zero inventory with (at most) some pre-specified probability. Costs incurred are expected transportation costs, facility operating costs and inventory costs.  相似文献   

2.
In this paper, a transportation problem comprising stochastic demands, fixed handling costs at the origins, and fixed costs associated with the links is addressed. It is assumed that uncertainty is adequately captured via a finite set of scenarios. The problem is formulated as a two-stage stochastic program. The goal is to minimize the total cost associated with the selected links plus the expected transportation and fixed handling costs. A prototype problem is initially presented which is then progressively extended to accommodate capacities at the origins and multiple commodities. The results of an extensive set of computational tests are reported and discussed.  相似文献   

3.
Workforce capacity planning in human resource management is a critical and essential component of the services supply chain management. In this paper, we consider the planning problem of transferring, hiring, or firing employees among different departments or branches of an organization under an environment of uncertain workforce demands and turnover, with the objective of minimizing the expected cost over a finite planning horizon. We model the problem as a multistage stochastic program and propose a successive convex approximation method which solves the problem in stages and iteratively. An advantage of the method is that it can handle problems of large size where normally solving the problems by equivalent deterministic linear programs is considered to be computationally infeasible. Numerical experiments indicate that solutions obtained by the proposed method have expected costs near optimal.  相似文献   

4.
We begin this paper by identifying a class of stochastic mixed-integer programs that have column-oriented formulations suitable for solution by a branch-and-price algorithm (B&P). We then survey a number of examples, and use a stochastic facility-location problem (SFLP) for a detailed demonstration of the relevant modeling and solution techniques. Computational results with a scenario representation of uncertain costs, demands and capacities show that B&P can be orders of magnitude faster than solving the standard formulation by branch and bound. We also demonstrate how B&P can solve SFLP exactly – as exactly as a deterministic mixed-integer program – when demands and other parameters can be represented as certain types of independent, random variables, e.g., independent, normal random variables with integer means and variances. Kevin Wood thanks the Office of Naval Research, Air Force Office of Scientific Research, the Naval Postgraduate School (NPS) and the University of Auckland for their support. Eduardo Silva thanks NPS and the Brazilian Navy for their support. Both authors are grateful to the COIN-OR team for assistance with computational issues, as well as to two anonymous referees for highly useful, constructive criticism.  相似文献   

5.
Facility location-allocation problem aims at determining the locations of some facilities to serve a set of spatially distributed customers and the allocation of each customer to the facilities such that the total transportation cost is minimized. In real life, the facility location-allocation problem often comes with uncertainty for lack of the information about the customers’ demands. Within the framework of uncertainty theory, this paper proposes an uncertain facility location-allocation model by means of chance-constraints, in which the customers’ demands are assumed to be uncertain variables. An equivalent crisp model is obtained via the \(\alpha \) -optimistic criterion of the total transportation cost. Besides, a hybrid intelligent algorithm is designed to solve the uncertain facility location-allocation problem, and its viability and effectiveness are illustrated by a numerical example.  相似文献   

6.
The treasurer of a bank is responsible for the cash management of several banking activities. In this work, we focus on two of them: cash management in automatic teller machines (ATMs), and in the compensation of credit card transactions. In both cases a decision must be taken according to a future customers demand, which is uncertain. From historical data we can obtain a discrete probability distribution of this demand, which allows the application of stochastic programming techniques. We present stochastic programming models for each problem. Two short-term and one mid-term models are presented for ATMs. The short-term model with fixed costs results in an integer problem which is solved by a fast (i.e. linear running time) algorithm. The short-term model with fixed and staircase costs is solved through its MILP equivalent deterministic formulation. The mid-term model with fixed and staircase costs gives rise to a multi-stage stochastic problem, which is also solved by its MILP deterministic equivalent. The model for compensation of credit card transactions results in a closed form solution. The optimal solutions of those models are the best decisions to be taken by the bank, and provide the basis for a decision support system.  相似文献   

7.
In this paper, we develop a novel stochastic multi-objective multi-mode transportation model for hub covering location problem under uncertainty. The transportation time between each pair of nodes is an uncertain parameter and also is influenced by a risk factor in the network. We extend the traditional comprehensive hub location problem by considering two new objective functions. So, our multi-objective model includes (i) minimization of total current investment costs and (ii) minimization of maximum transportation time between each origin–destination pair in the network. Besides, a novel multi-objective imperialist competitive algorithm (MOICA) is proposed to obtain the Pareto-optimal solutions of the problem. The performance of the proposed solution algorithm is compared with two well-known meta-heuristics, namely, non-dominated sorting genetic algorithm (NSGA-II) and Pareto archive evolution strategy (PAES). Computational results show that MOICA outperforms the other meta-heuristics.  相似文献   

8.
Stochastic chance constrained mixed-integer nonlinear programming (SCC-MINLP) models are developed in this paper to solve the refinery short-term crude oil scheduling problem which concerns crude oil unloading, mixing, transferring and multilevel inventory control under demands uncertainty of distillation units. The objective of these models is the minimum expected value of total operation cost. It is the first time that the uncertain demands of Crude oil Distillation Units (CDUs) in these problems are set as random variables which have discrete and continuous joint probability distributions. This situation is close to the real world industry use. To reduce the computation complexity, these SCC-MINLP models are transformed into their equivalent stochastic chance constrained mixed-integer linear programming models (SCC-MILP). Stochastic simulation and stochastic sampling technologies are introduced in detail to solve these complex SCC-MILP models. Finally, case studies are effectively solved with the proposed approaches.  相似文献   

9.
This paper develops a fuzzy multi-period production planning and sourcing problem with credibility objective, in which a manufacturer has a number of plants or subcontractors. According to the credibility service levels set by customers in advance, the manufacturer has to satisfy different product demands. In the proposed production problem, production cost, inventory cost and product demands are uncertain and characterized by fuzzy variables. The problem is to determine when and how many products are manufactured so as to maximize the credibility of the fuzzy costs not exceeding a given allowable invested capital, and this credibility can be regarded as the investment risk criteria in fuzzy decision systems. In the case when the fuzzy parameters are mutually independent gamma distributions, we can turn the service level constraints into their equivalent deterministic forms. However, in this situation the exact analytical expression for the credibility objective is unavailable, thus conventional optimization algorithms cannot be used to solve our production planning problems. To overcome this obstacle, we adopt an approximation scheme to compute the credibility objective, and deal with the convergence about the computational method. Furthermore, we develop two heuristic solution methods. The first is a combination of the approximation method and a particle swarm optimization (PSO) algorithm, and the second is a hybrid algorithm by integrating the approximation method, a neural network (NN), and the PSO algorithm. Finally, we consider one 6-product source, 6-period production planning problem, and compare the effectiveness of two algorithms via numerical experiments.  相似文献   

10.
In this paper we apply stochastic programming modelling and solution techniques to planning problems for a consortium of oil companies. A multiperiod supply, transformation and distribution scheduling problem—the Depot and Refinery Optimization Problem (DROP)—is formulated for strategic or tactical level planning of the consortium's activities. This deterministic model is used as a basis for implementing a stochastic programming formulation with uncertainty in the product demands and spot supply costs (DROPS), whose solution process utilizes the deterministic equivalent linear programming problem. We employ our STOCHGEN general purpose stochastic problem generator to ‘recreate’ the decision (scenario) tree for the unfolding future as this deterministic equivalent. To project random demands for oil products at different spatial locations into the future and to generate random fluctuations in their future prices/costs a stochastic input data simulator is developed and calibrated to historical industry data. The models are written in the modelling language XPRESS-MP and solved by the XPRESS suite of linear programming solvers. From the viewpoint of implementation of large-scale stochastic programming models this study involves decisions in both space and time and careful revision of the original deterministic formulation. The first part of the paper treats the specification, generation and solution of the deterministic DROP model. The stochastic version of the model (DROPS) and its implementation are studied in detail in the second part and a number of related research questions and implications discussed.  相似文献   

11.
We consider the one-warehouse multi-retailer problem where a warehouse replenishes multiple retailers with deterministic dynamic demands over a horizon. The problem is to determine when and how much to order to the warehouse and retailers such that the total system-wide costs are minimized. We propose a new (combined transportation and shortest path based) integer programming reformulation for the problem in addition to the echelon stock and transportation based formulations in the literature. We analyze the strength of the LP relaxations of three formulations and show that the new formulation is stronger than others. We also show that the new and transportation based formulations are equivalent for the joint replenishment problem, where the warehouse is a crossdocking facility. We extend all formulations to the case with initial inventory at the warehouse and reveal the relation among their LP relaxations. We present our computational experiments with all formulations over a set of randomly generated test instances.  相似文献   

12.
We consider a P model version of stochastic spanning tree problems with random edge costs. Parameters of underling probability distribution of edge costs are unknown and so they are estimated by a confidence region from statistical data. The problem is first transformed into a deterministic equivalent problem with a minimax type objective function and a confidence region of means and variances, since we assume normal distributions with respect to random edge costs. Our model reflects the situation that the maximum possible damage due to an unknown parameter should be minimized. We show the problem can be reduced to the deterministic equivalent problem of another stochastic spanning tree problem, which is already investigated by us. Thus, we can find an optimal spanning tree of the original problem very efficiently by this reduction.  相似文献   

13.
In this paper, we study how the two classical location models, the simple plant location problem and thep-median problem, are transformed in a two-stage stochastic program with recourse when uncertainty on demands, variable production and transportation costs, and selling prices is introduced. We also discuss the relation between the stochastic version of the SPLP and the stochastic version of thep-median.  相似文献   

14.
The stochastic transportation problem with single sourcing   总被引:1,自引:0,他引:1  
We propose a branch-and-price algorithm for solving a class of stochastic transportation problems with single-sourcing constraints. Our approach allows for general demand distributions, nonlinear cost structures, and capacity expansion opportunities. The pricing problem is a knapsack problem with variable item sizes and concave costs that is interesting in its own right. We perform an extensive set of computational experiments illustrating the efficacy of our approach. In addition, we study the cost of the single-sourcing constraints.  相似文献   

15.
Solving transportation problems is essential in engineering and supply chain management, where profitability depends on optimal traffic flow. This study proposes risk-control approaches for two bottleneck transportation problems with random variables and preference levels to objective functions with risk parameters. Each proposed model is formulated as a multiobjective programming problem using robust-based optimization derived from stochastic chance constraints. Since it is impossible to obtain a transportation pattern that optimizes all objective functions, our proposed models are numerically solved by introducing an aggregation function for the multiobjective problem. An exact algorithm that performs deterministic equivalent transformations and introduces auxiliary problems is also developed.  相似文献   

16.
We develop methods to estimate and exactly calculate the expected cost of a priori policies for the multi-compartment vehicle routing problem with stochastic demands, an extension of the classical vehicle routing problem where customer demands are uncertain and products must be transported in separate partitions. We incorporate our estimation procedure into a cyclic-order-based simulated annealing algorithm, significantly improving the best-known solution values for a set of benchmark problems. We also extend the updating procedure for a cyclic order’s candidate route set to duration-constrained a priori policies.  相似文献   

17.
In this paper, a stochastic bottleneck transportation problem, which aims at minimizing the transportation time target subject to a chance constraint, is formulated and an algorithm based on a parametric programming approach is developed to solve it. Further, assuming the transportation costs to be deterministic, a trade-off analysis between the transportation time target and the total cost is given. In addition, methods are developed which give the whole spectrum of optimal solutions to the problems mentioned above. The algorithms are illustrated by numerical examples. The computational complexity of the algorithms is also discussed.  相似文献   

18.
《随机分析与应用》2013,31(3):589-625
Abstract

We consider a periodic-review stochastic inventory problem in which demands for a single product in each of a finite number of periods are independent and identically distributed random variables. We analyze the case where shortages (stockouts) are penalized via fixed and proportional costs simultaneously. For this problem, due to the finiteness of the planning horizon and non-linearity of the shortage costs, computing the optimal inventory policy requires a substantial effort as noted in the previous literature. Hence, our paper is aimed at reducing this computational burden. As a resolution, we propose to compute “the best stationary policy.” To this end, we restrict our attention to the class of stationary base-stock policies, and show that the multi-period, stochastic, dynamic problem at hand can be reduced to a deterministic, static equivalent. Using this important result, we introduce a model for computing an optimal stationary base-stock policy for the finite horizon problem under consideration. Fundamental analytic conclusions, some numerical examples, and related research findings are also discussed.  相似文献   

19.
Balinski uses his signature method for the proof of the Hirsch-conjecture for dual transportation polyhedra to obtain an efficient algorithm for the assignment problem. We will show how to extend this method to other primal transportation problems, including transportation problems with unit demands. We then prove that Balinski's assignment algorithm is equivalent, cycle by cycle, to that of Hung and Rom. We demonstrate that, under some assumptions for our probability model, a modification of the latter algorithm has an average complexity of O(n 2logn) and present some computational results confirming this. We also present results that indicate that this modification compares favorably with Balinski's algorithm and other codes. Research of both authors supported, in part, by grants of the Alexander von Humboldt-Stiftung. Supported, in part, by NSF grant DMS-8504050.  相似文献   

20.
In this study, we start from a multi-source variant of the two-stage capacitated facility location problem (TSCFLP) and propose a robust optimization model of the problem that involves the uncertainty of transportation costs. Since large dimensions of the robust TSCFLP could not be solved to optimality, we design a memetic algorithm (MA), which represents a combination of an evolutionary algorithm (EA) and a modified simulated annealing heuristic (SA) that uses a short-term memory of undesirable moves from previous iterations. A set of computational experiments is conducted to examine the impact of different protection levels on the deviation of the objective function value. We also investigate the impact of variations of transportation costs that may occur on both transhipment stages on the total cost for a fixed protection level. The obtained results may help in identifying a sustainable and efficient strategy for designing a two stage capacitated transportation network with uncertain transportation costs, and may be applicable in the design and management of similar transportation networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号