首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract—Plant response to UV-B (0.290–0.320 μm) irradiation in controlled environments has been difficult to assess, possibly because plants also respond to UV-A (0.320–0.400 μm) and visible radiation. Photosynthetic dysfunction is often reported, but effects on photosynthetic pigments have been equivocal. Because UV-A/blue radiation is involved in pigment synthesis, the experimental UV-A irradiation was controlled and this study was conducted under high ambient photosynthetic photon flux (mid-day PPF > 1400 pmol m –2 s–1). Two biologically effective UV-B irradiances (10.7 and 14.1 kJ m-2 day-I) were utilized and the UV-A irradiances were matched in controls (˜5 and 9 kJ m-2 day-1). Normal and two mutant pigment isolines (chlorophyll-deficient, flavonoid-deficient) of soybean cultivar Clark were utilized for comparisons. Many pigmedgrowth variables exhibited a statistical interaction between spectral quality and quantity. UV-A/blue photoregulation was demonstrated in the UV-A controls. The pigmentlgrowth pattern observed at the lower UV-B irradiance was interpreted as a photosystem II response similar to shade adaptation, suggesting phytochrome involvement in UV-B irradiation responses. On the other hand, two variables most commonly observed to manifest UV-B-induced effects—decreased photosynthesis and increased leaf flavonoid content—exhibited no interactions due to UV exposure or spectral quality. In general, the observed response patterns indicated either moderation of UV-B-induced responses by UV-A/blue radiation, or coaction between them, and provides an explanation for the common failure to demonstrate fluence-related responses in UV-B experiments.  相似文献   

2.
Abstract— Twelve flow-through estuarine microcosms were exposed daily to four different levels of UV-B radiation (290–320. nm)(1.57 ± 102, 6.43 ± 103, 6.86 ± 103 and 7.61 ± 103 J·m-2d−1) in addition to a natural level of visible solar radiation (380-800. nm). The parameters studied over a four week period were phytoplankton community composition, plankton biomass (ash-free dry weight), chlorophyll a concentration and primary productivity (radiocarbon uptake). With increased exposure to UV-B radiation there was an obvious alteration of the community composition. Daily exposure to enhanced levels of UV-B radiation also depressed the biomass, the chlorophyll a concentration and the radiocarbon uptake of samples from the ecosystems.  相似文献   

3.
This study examines the effects of natural solar radiation on the metal-binding capacity of dissolved organic matter (DOM). Newington Bog water (35.5 mg L−1 dissolved organic carbon [DOC]) was irradiated for 20 days under UV-B lamps in the laboratory and under natural solar radiation. In the presence of irradiated DOM, IC50 (contaminant concentration required to reduce algal growth by 50%) was significantly decreased with UV-B treatment for four metals: Pb, 64%; Cu, 63%; Ni, 35% and Cd, 40%. Solar radiation also significantly decreased IC50 of Pb (58%) and Cu (49%), DOC concentration (11%), DOM fluorescence (DOMFL, 33%) and DOC-specific UV absorbance. Further experiments on Raisin River water (20.7 mg DOC L−1) exposed to 20 days of artificial UVA and UV-B radiation produced significant decreases in IC50 for Cu (48%) with UV-A and for Pb (43%) with UV-B. DOC concentration was decreased 20% by UV-B and 24% by UV-A. DOMFL decreased 51.5% in the first 5 days of UV-A exposure, an effect that was not observed with the UV-B treatment. The UV-A treatment decreased UV absorbance more at longer wavelengths and over a broader wavelength band than did the UV-B treatment. Change in toxicity with UV irradiation was inconsistent among the metals tested in this study, indicating that some organic metal-binding ligands were more quickly removed or altered than others. The DOM remaining after irradiation appears to be qualitatively different from the unirradiated DOM. The much greater irradiance of UV-A makes its contribution to the removal and/or alteration of DOM at least as important as the influence of higher energy UV-B.  相似文献   

4.
Abstract— For preventing or minimizing acute and chronic skin damage caused by UV radiation, the use of sunscreens is probably the most important measure. To screen the protective efficacy of new sunscreen molecules or formulations against UV rays, we evaluated as in vitro testing methods the use of two three-dimensional models, a dermal equivalent (DE) and a skin equivalent (SE). The DE is composed of a porous collagen-glycosaminoglycans-chitosan matrix populated by normal human fibroblasts. The SE is comprised of a fully differentiated epidermis realized by seeding keratinocytes onto the DE. In this study, we demonstrated that the DE and SE models react to the deleterious effects of UVA and UVB. Then, we extended our research to the evaluation of their usefulness for photoprotection trials. Sunscreen agents (Euso-lex 8020 and 6300) and commercially available sunscreens (chemical and physical filter formulations) that protect the skin against either UVA or UVB were evaluated. The tested products were applied (n = 6) topically (10 μL) and incubated for 30 min prior to irradiation over a range of UVA (0-50 J/cm2) or UVB (0-5 J/cm2). The photoprotection provided by the tested sunscreen molecules and formulations was evaluated by measurement of residual cellular viability 24 h postirradiation using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) test and assessment of the inflammation response by interleukin-la release assay. When sunscreens were applied prior to UV exposure, a higher residual cellular viability versus control was obtained, demonstrating the photoprotective effects of the tested products. These in vitro models could be used for screening tests to evaluate the protective effects of sunscreen molecules and formulations, especially for UVA trials because there is a lack of consensus for an in vivo method.  相似文献   

5.
Ultraviolet A radiation participates in cytotoxicity and carcinogenesis of the skin by a mechanism involving the generation of reactive oxygen species. Endogenous antiradical defense systems utilize metalloenzymes including Se-dependent glutathione peroxidase and Cu and Zn superoxide dismutase. The aim of the present work was to determine the protective effect of two trace elements, Se and Zn, on cultured human diploid fibroblasts exposed to UV-A radiation (broad-spectrum source with a maximum intensity at 375 nm). Selenium in the culture medium (0.1 mg/L) in the form of sodium selenite increased the synthesis and activity of glutathione peroxidase by 60.5% in the absence of exposure to UV-A radiation and by 35% after irradiation with 5 J/cm2 ( P = 0.043). The presence of this element significantly increased the survival of UV-A-irradiated fibroblasts ( P < 0.0001). This confirms the essential role of Se in the detoxifying activity of the enzyme. In addition, thiobarbituric acid-reacting substances (TBAR), which are lipid peroxidation markers, decreased in the presence of exogenous Se:—19% and -22% without irradiation and after irradiation with 5 J/cm2 ( P = 0.056). When Zn was added at the dose of 6.5 mg/L as ZnCl2, fibroblasts subjected to oxidizing stress induced by UV-A were protected from cytotoxicity ( P <0.0001). The TBAR production decreased significantly: -33% without irradiation and -34% after irradiation with 5 J/cm2 ( P = 0.008). Superoxide dismutase activity, however, decreased after supplementing with Zn: - 26% without irradiation and - 20% after UV-A irradiation ( P = 0.017). The antioxidant properties of Zn are thus apparently independent of superoxide dismutase activity.  相似文献   

6.
Abstract Effects on lens physiology of UVB and UVA used separately and sequentially were investigated using 4 week old rabbit lenses in organ culture. Narrowband UVB at 0.3 J/cm2= joules/lens (1 h exposure) has little effect on sodium and calcium concentrations in the lens interior or transparency of lenses subsequently cultured for 20 h after a 1 h exposure. With an incident energy of 3 J/cm2 of broadband UVB (295–330 nm), lenses become opaque and slightly swollen with significant ion imbalances during culture over a 1 day period. In contrast, lenses exposed to approximately 6–24 J/cm2 of UVA (330–400 nm) remain transparent after 1 day of culture. Extended culture up to 4 days reveals no signs of opacification. Ion homeostasis and normal lens hydration are also maintained in UVA-irradiated lenses. The presence of 95% oxygen during UVA irradiation is also without effect. Broadband UVA irradiation is damaging, however, if lenses are first exposed to subthreshold doses of narrowband UVB (307 ± 5 nm) irradiation, viz . 0.3 J/cm2. Thus, sequential UVB/UVA irradiation at subthreshold doses causes impaired active cation transport and accumulation of sodium and calcium accompanying lens opacification.  相似文献   

7.
Abstract— Mono- and multilayers of chlorophyll a (Chl a )– lecithin have been prepared on quartz slides, by means of the Blodgett-Langmuir technique, for fluorescence studies. Self-quenching of the Chl a fluorescence has been observed in Chl a -lecithin single layer excited with a laser light at 632.8 nm. The fluorescence yield is reduced by 50% at a concentration of 7 ± 1012 Chl a molecules cm−2. Chl a fluorescence quenching, by adding N,N -distearoyl-1,4-diaminoanthraquinone (SAQ), has been studied. in a single layer, in pure Chl a and also at various dilutions of Chl a in lecithin. The results are explained in terms of a dynamic quenching rather than in terms of a permanent complex formation, at the ground state, between Chl a and SAQ. The fluorescence quenching has been interpreted as the result of an electron transfer from excited Chl a to SAQ, and rate constants of 8.3 ± 10−5 cm2 molecule−1 S−1 and 2.4 ± 10−4 cm2 molecule−1 s−1 have been found for pure diluted Chl a , respectively. Ten per cent of the diluted Chl a fluorescence always remains unquenchable and independent of the quinone concentration. In multilayers, where SAQ and Chl a are in different layers, there is no fluorescence quenching for pure or diluted Chl a even when the chromophores are in two adjacent layers. This happens only if SAQ is not able to diffuse from one layer to another. A minimum value of 22.4 nm has been found for the singlet exciton diffusion length in pure Chl a multilayers.  相似文献   

8.
Lutetium texaphyrin, PCI-0123, is a pure, water-soluble photosensitizer with a large broad absorption band centered at 732 nm. The compound was tested for photodynamic therapy (PDT) effectiveness in a murine mammary cancer model. The texaphyrin macrocycle as illustrated by magnetic resonance imaging and 14C-radiolabeled texaphyrin studies was shown to be tumor selective; a tumor-to-muscle ratio of 10.55 was seen after 5 h. Lutetium texaphyrin, at a drug dose of 20 μmol/kg with irradiation 5 h postinjection at 150 J/cm2 and 150 mW/cm2, had significant efficacy (P < 0.0001) in treating neoplasms of moderate size (40 ± 14 mm3) and also had significant efficacy ( P < 0.0001) in treating larger neoplasms (147 ± 65 mm3). The PDT efficacy was correlated with the time interval between PCI-0123 administration and light exposure. A 100% cure rate was achieved when photoirradiation took place 3 h postinjection compared to 50% for 5 h using 10 μmol/kg and 150 J/cm2 at 150 mW/cm2. The PDT efficacy was attributable to the selective uptakehetention of the texaphyrin photosensitizer in addition to the depth of light penetration achievable at the 732 nm laser irradiation.  相似文献   

9.
Abstract— We measured excision repair of ultraviolet radiation (UVR)-induced pyrimidine dimers in DNA of the corneal epithelium of the marsupial, Monodelphis domestica , using damage-specific nucleases from Micrococcus luteus in conjunction with agarose gel electrophoresis. We observed that 100 J -2 of UVR from aFS–40 sunlamp(280–400 nm) induced an average of 2.2 ± 0.2 times 10-2 endonuclease-sensitive sites per kilobase (ESS/kb) (pyrimidine dimers) and that ∼ 50% of the dimers were repaired within 12 h after exposure. We also determined that an exposure of 400 J m-2 was needed to induce comparable numbers of pyrimidine dimers (2.5 times 10-2) in the DNA of skin of M. domestica in vivo . In addition, we found that 50% of the dimers were also removed from the epidermal cells of M. domestica within 12 h after exposure. A dose of 100 J m-2 was necessary to induce similar levels of pyrimidine dimers (2.0 ± 0.2 times 10-2) in the DNA of the cultured marsupial cell line Pt K2 ( Potorous tridactylus ).  相似文献   

10.
Abstract— The skin of the lower inner arm of volunteers was irradiated, with a 390–1700 nm light source, through a fiber optic bundle for times of up to 1.2 × 104 s and with powers of up to 0.35 W/cm2. Simultaneously with the irradiation, spectra (390–720 nm) of the remitted intensity were measured, while a 5.0 cm in diameter area of the skin around the fiber bundle was maintained at constant temperature, within 0.2°C. The generation of a photoproduct was observed and measured as changes in the remitted intensity within 600 s (10 min) of the start of irradiation.
The photoproduct formed was characterized by a weak absorption in the blue part of the spectrum (400–450 nm), leading to a bluish appearance in the irradiated area only. The color change appears as a two step process. It starts with a "soluble" photoproduct, which disappears, within 24 h after irradiation, and an "insoluble" photoproduct which appears with irradiation greater than 3 ×103 s (50 min). No spectral differences were detected between the two photoproducts. The "insoluble" photoproduct persists for periods of up to 8 weeks. The color change in the skin is immediate and there is no erythema associated with this color change.  相似文献   

11.
Abstract— At the high mountain station Jungfraujoch (3576 m), the maximum daily totals for erythemal dose (GER), UV-A radiation (GUVA) and global radiation (G) are 29 Sunburn Units d−1, l.7 MJ m−2d−1 and 37 MJ m−2 d−1. The maximum instantaneous values at solar noon in midsummer are 4.2 Sunburn Unit h−1, 53 W m−2 and 1110 W m−2. A significantly nonlinear relation between GER and G results from the influence of the irradiated ozone mass on the UV-B erythemal dose. In contrast, GUVA and G are linearly proportional, which can be seen from the diurnal and seasonal courses of the ratios GER/G and GUVA/G AND from their dependence on the optical air mass. UV-A radiation flux is less attenuated by cloudiness than is global radiation. This effect is masked for the erythemal dose by variations in the ozone concentration. Due to seasonal ozone layer thickness and effective pathlength variations, the ratio GER/G shows a significant asymmetry. At the autumn equinox it is about 16% higher than at the spring equinox.  相似文献   

12.
Abstract— The influence of chloride ion on the rate of decay of triplet methylene blue in 0.01 M acid in the absence and presence of ferrous ions was investigated by means of laser flash-photolysis monitored by kinetic spectrophotometry. Chloride weakly accelerates decay of 3MBH in aqueous solution in the absence of Fe(II). Quenching of 3MBH2+ by Fe(II) is more strongly catalyzed by Cl- in both water and 50 v/v% aq. CH3CN. The uncatalyzed quenching constant, k 5, is of the order of 1 × 106 M -1 s-1 while in 4.8 M aqueous chloride ( μ – 7.2 M ) k 5= (37.2 ± 1.8) × 106 M -1 s-1. A possible role of chloride is as a bridging species in quenching via electron transfer between 3MBH2+ and Fe(II).  相似文献   

13.
Dermatophytes are fungi that cause infections of keratinized tissues. We have recently demonstrated the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment (PDT) with 5,10,15-Tris(4-methylpyridinium)-20-phenyl-[21 H ,23 H ]-porphine trichloride (Sylsens B) in 5 m m citric acid/sodium citrate buffer (pH 5.2, formulation I). In this work, we examined the penetration of Sylsens B in healthy and with T. rubrum infected skin and we investigated the susceptibility of T. rubrum to PDT using formulation I and UVA-1 radiation (340–550 nm). Skin penetration studies were performed with formulations I and II (Sylsens B in PBS, pH 7.4) applied on dermatomed skin, human stratum corneum (SC), disrupted SC by T. rubrum growth and SC pretreated with a detergent. No penetration was observed in healthy skin. Disruption of SC by preceding fungal growth caused Sylsens B penetration at pH 7.4, but not at pH 5.2. However, chemically damaged SC allowed Sylsens B to penetrate also at pH 5.2. UVA-1 PDT was applied ex vivo during two fungal growth stages of two T. rubrum strains (CBS 304.60 and a clinical isolate). Both strains could be killed by UVA-1 alone (40 J/cm2). Combined with formulation I (1 and 10 μ m Sylsens B for, respectively, CBS 304.60 and the clinical isolate), only 18 J/cm2 UVA-1 was required for fungal kill. Therefore, PDT with 10 μ m Sylsens B (formulation I) and 18 J/cm2 UVA-1 could be considered as effective and safe. This offers the possibility to perform clinical studies in future.  相似文献   

14.
Abstract The trans to cis photoisomerization of urocanic acid (UCA) in skin is considered to play an important role in the mechanism of immunosuppression. We have investigated the effects of skin type and various sunscreens with low sun protection factor (SPF) on the UV-induced cis -UCA formation in human skin after exposure to artificial IJV light. The rate of cis -UCA formation depends little on the skin type and is reduced by topical application of sunscreens. The rate of cis -UCA formation decreases with increasing SPF and only broad-spectrum, highly protective sunscreens offer protection against the UV-induced formation of cis -UCA, which accumulates in the stratum corneum after multiple UV exposures. A theoretical approach to estimate the distribution of cis -UCA after irradiation indicates that this compound may diffuse into the deeper layers of the epidermis with D ∼ 10−17 m2/s, and that its elimination from the stratum corneum is mainly due to desquamation.  相似文献   

15.
DETECTION OF DNA-PSORALEN PHOTOADDUCTS in situ   总被引:1,自引:0,他引:1  
Abstract— An immunological method, with the use of specific immune serum, has been developed for detection of 8-methoxypsoralen (8-MOP) photoadducts to DNA, formed in situ in cell nuclei, after combined treatment with 8MOP and UV-A irradiation (Zarçbska et al. , 1978). Lymphocytes fixed on slides or in suspension, and cryostat sections of different mammalian tissues, served as antigenic substrate, after treatment with 8-MOP and UV-A in vitro. Specific fluorescence in these substrates was detected in the nuclei after treatment with 30 ˜ 140 kJ/m2 UV-A in the presence of 0.1-0.3 μg/cm2 8-MOP. PHA-stimulated-lymphocytes appeared to be the most sensitive substrate.
However, hairless mice treated with high doses of UV-A in vivo , 70 ˜ 360 kJ/m2 did not reveal a specific fluorescence of epidermal nuclei, unless a high local concentration of 8-MOP was attained.
The apparent discrepancy in the level of photoadduct detection between the in vitro and in vivo treated specimens was explained by the low number of DNA-8-MOP-photoadducts formed in vivo under these experimental conditions. The relevance of these findings to the role of DNA-8-MOP-photoadducts formed during PUVA photochemotherapy is discussed.  相似文献   

16.
Abstract—
The interaction between human α1-acid glycoprotein (orosomucoid) and the fluorescent probe, 2- p -toluidinylnaphthalene-6-sulfonate (TNS) has been studied. An association constant of 16.7 (±3) X 103 M -1 was obtained for the complex at 20°C with a stoichiometry of 1:1. From the effect of temperature on the binding process, the standard enthalpy change for the binding is calculated to be ΔH0= -18 ± 3 kJ mol-1 and the standard entropy change ΔS0= 19 ± 12 J K-1 mol-1. The tryptophan fluorescence of the protein can be described by a sum of three exponentials. Upon TNS binding, the average fluorescence lifetime of the protein in the complex changes much less than the fluorescence intensity. The bound TNS is therefore a very efficient acceptor for the protein fluorescence. The TNS bound to orosomucoid presents two fluorescence lifetimes 1 1 and 4.3 ns. The possible origins of the two lifetimes are discussed.  相似文献   

17.
Abstract— Low-level laser irradiation has been applied in a variety of laboratory studies and clinical trials for photobiostimulation over the last three decades. Considerable skepticism exists regarding the concept of photostimulation within the medical community. One of the major difficulties with photoirradiation research is that it lacks experimentally supportable mechanisms for the alleged photobiostimulatory effects. This study was undertaken to determine whether oxidative metabolism and electron chain enzymes in rat liver mitochondria can be modulated by photoirradiation. Oxygen consumption, phosphate potential, and energy charge of rat liver mitochondria were determined following photoirradiation. Activities of mitochondrial enzymes were analyzed to assess the specific enzymes that are directly involved with the photostimulatory process. An argon-dye laser at a wavelength of 660 nm and at a power density of 10 mW/cm2 was used as a photon source. Photoirradiation significantly increased oxygen consumption (0.6 J/cm2 and 1.2 J/cm2, P < 0.05), phosphate potential, and the energy charge (1.8 J/cm2 and 2.4 J/cm2, P < 0.05) of rat liver mitochondria and enhanced the activities of NADH: ubiquinone oxidoreductase, ubiquinol: ferricytochrome C oxidoreductase and ferrocytochrome C: oxygen oxidoreductase (0.6 J/cm2, 1.2 J/cm2, 2.4 J/cm2 and 4.8 J/cm2, P < 0.05). The activities of succinate ubiquinone oxidoreductase, ATPase, and lactate dehydrogenase were not affected by photoirradiation.  相似文献   

18.
Abstract— DNA photolyases photorepair pyrimidine dimers (PyroPyr) in DNA as well as RNA and thus reverse the harmful effects of UV-A (320–400 nm) and UV-B (280–320 nm) radiations. Photolyases from various organisms have been found to contain two noncovalently bound cofactors; one is a fully reduced flavin adenine dinucleotide (FADH-) and the other, commonly known as second chromophore, is either methenyltetrahydrofolate (MTHF) or 8-hydroxydeazaflavin (8-HDF). The second chromophore in photolyase is a light-harvesting molecule that absorbs mostly in the near-UV and visible wavelengths (300–500 nm) with its high extinction coefficient. The second chromophore then transfers its excitation energy to the FADH-. Subsequently, the photoexcited FADH- transfers an electron to the Pyr<>Pyr generating a dimer radical anion (Pyr<>Pyr-) and a neutral flavin radical (FADH-). The Pyr<>Pyr- is very unstable and undergoes spontaneous splitting followed by a back electron transfer to the FADH-. In addition to the main catalytic cofactor FADH-, a Trp (Trp277 in Escherichia coli ) in apophotolyase, independent of other chromophores, also functions as a sensitizer to repair Pyr <> Pyr by direct electron transfer.  相似文献   

19.
Abstract— The effects of photodynamic therapy (PDT) on normal brain tissue and depth of brain necrosis were evaluated in rats receiving 2.5 mg/kg aluminum phthalocyanine tetrasulfonate. Twenty-four hours later brains were irradiated with 675 nm light at a power density of 50 mW/cm2 and energy doses ranging from 1.6 to 121.5 J/cm2. Brains were removed 24 h after PDT and evaluated microscopically. When present, brain lesions consisted of well-demarcated areas of coagulation necrosis. When plotting the depth of necrosis against the natural log of energy dose, the data fit a piecewise linear model, with a changepoint at 54.6 J/cm2 and an x intercept of 7.85 J/cm2. The slopes before and after the changepoint were 2.04 and 0.21 mm/In J cm-2, respectively. The x intercept suggests a minimum light dose below which necrosis of normal brain will not occur, whereas the changepoint indicates the energy density corresponding to an approximate maximum depth of necrosis.  相似文献   

20.
The in vitro photodecomposition of chlorpromazine (CPZ) was investigated with the aim to evaluate possible reactive determinants that could play a role in the occurrence of the in vivo -observed photosensitivity. In view of the in vivo situation, CPZ was dissolved in low concentration in buffered aqueous solution (pH 7.4) or in dilute human serum and irradiated with low intensity (5–7 W m-2) UV-A and UV-B. No distinct difference was found between UV-A or UV-B irradiation as far as photoproduct formation is concerned. This suggests the same degradation mechanism at both wavelength ranges. In buffered aqueous solution, irradiation of CPZ resulted in 65 and 90% 2-hydroxypromazine (PZOH), 5 and 7% promazine (PZH) and 2 and 0% chlorpromazinesulfoxide (CPZSO) under aerobic and anaerobic conditions, respectively. In dilute human serum, there was only a shift in the PZH/PZOH ratio, probably as a result of H-atom or electron donation by sulfur containing groups present in proteins. The results demonstrate that photodegradation of CPZ in vitro , under conditions relevant to the in vivo situation, proceeds almost entirely by dechlorination rather than by radical cation formation (the essential pathway of CPZSO production). Thus we conclude that the thiyl radical cation probably does not play a major role in the in vivo -observed phototoxic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号