首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The tribological characteristics (wear resistance, coefficient of friction ) of a high-density-polyethylene-base composite filled with calcite and highly disperse silicon nitride produced by the plasmochemical method are investigated experimentally. The experiment plan was compiled in the form of a simplex lattice, and new points were planned in conducting the experiments. Compositions possessing appreciably elevated wear resistance (by a factor of 500) and a coefficient of friction reduced by 20% as compared with the unfilled polymer were obtained. Institute of Inorganic Chemistry of the Latvian Academy of Sciences, Salasplis, LV-2169. Institute of Polymer Mechanics of the Latvian Academy of Sciences, Riga, LV-1006. Riga Mechanical University, Riga, LV-1050, Latvia. Translated from Mekhanika Kompozinykh Materialov, No. 5, pp. 690–695, September–October, 1996.  相似文献   

2.
The dependence of physical and mechanical properties of monolithic and foamed rigid polyurethanes on the content of flame retardants was investigated at 293 and 98 K. The character of the influence of the content of trichloroethyl phosphate on the ultimate tensile elongation and the coefficient of linear thermal expansion for monolithic and foamed polyurethanes at a temperature of 98 K was established. Latvian State Institute of Wood Chemistry, Riga, LV-1006 Latvia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 5, pp. 671–676, September–October, 1999.  相似文献   

3.
The advisability of application of advanced composites in deep-water offshore technology is shown using risers and tendons as examples. Numerical estimations of the parameters of multilayered metal-composite risers are obtained. Two new processes of spatial braiding for creating the external jackets of compound tendons are considered. Advanced composites are the only possible choice for exploitation of deposits at depths greater than 1500 m. That is why they are the most promising structural materials for offshore technology in the next century. This report was presented at the Symposium “Composites for the Next Millennium” in honor of Stephen Tsai's 70th birthday, Tours, France, 2–3 July, 1999. Institute of Polymer Mechanics, University of Latvia, Riga, LV-1006 Latvia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 5, pp. 549–560, September–October, 1999.  相似文献   

4.
An analytical relationship between the thermooxidation rate constants and mechanical properties of composite materials under isothermal and dynamic conditions is obtained. With the example of epoxy-based composites, it is shown that the kinetic parameters of thermooxidation can be used to predict the internal stresses and breakdown voltage of coatings. The calculated drop in the impact toughness exceeds its experimental value by 30%, while the calculated relative breaking elongation is 1.5–2 times greater than the experimental one. A considerable decrease in these indices is observed at a loss of 0.1–1 wt.% of volatile products of thermooxidation. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 2, pp. 237–248, January–February, 2000.  相似文献   

5.
We show how the Gabriel–Roiter measure, introduced by Ringel in (Bull Sci Math 129:726–748, 2005 and Contemp Math 406:105–135, 2006), applies to indecomposable modules of finite length over right pure semisimple rings, and in particular to the study of the open problem whether any right pure semisimple ring is of finite representation type. Dedicated to the memory of Andrey Vladimirovich Roiter. Professor A. V. Roiter has died on 26 July 2006 in Riga, Latvia. He was born in 1937.  相似文献   

6.
Because of the risk of delamination due to high interlaminar stresses in the vicinity of free edges of composite laminates, there is a strong interest in efficient methods for the analysis of this free-edge effect. By the example of a symmetric [0°/90°]s cross-ply laminate, the Boundary Finite Element Method is presented as a very efficient numerical method, which combines the advantages of the finite element method and the boundary element method. Analogously to the boundary element method, only the boundary is discretized, while the element formulation is finite element based. The resultant stress field is shown to be in very good agreement qualitatively and quantitatively with the comparative finite element analysis. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Published in Mekhanika Kompozitnykh Materialov, Vol. 36, No. 3, pp. 355–366, March–April, 2000.  相似文献   

7.
The effective deformative characteristics of spatially reinforced composites made by spatial braiding along the generatrices of a one-sheet hyperboloid are analyzed. The geometrical relationships determining the structure of a unit cell of a braided composite are derived. The effective thermoelastic characteristics are calculated by the method of orientational averaging. The dependences of the bending and torsional stiffnesses of thick-walled cylindrical rods — made by the method suggested and by winding — on the braiding/winding angle are compared. The numerical estimations are given for rods made of carbon (CFRP) and aramid (AFRP) epoxy plastics. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompzitnykh Materialov, Vol. 36, No. 3, pp. 341–354, May–June, 2000.  相似文献   

8.
The influence of displacements of tensioned fibers on the impregnation of fibrous layers with a polymer melt and on the final composite structure is studied. Using computer simulation, it is shown that, during impregnation, the structure of tensioned fibrous layers changes considerably depending on the initial arrangement and tensioning of fibers. The consolidated regions formed under the melt front move inside the impregnated layer with the advancing melt front. Displacement of the tensioned fibers as well as the formation of “washouts” favors the impregnation of internal layers, but cause significant inhomogeneity of the polymer structure. The surface (on the side of the melt flow) regions are more saturated with the polymer than the internal ones. A difference in the melt percolation mechanisms at various impregnation regimes is revealed. The effective permeability coefficients of a tensioned fiber layer are not constant but depend on the conditions and regimes of impregnation. Submitted to the 11th Conference on the Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 2, pp. 259–270, March–April, 2000.  相似文献   

9.
A phenomenological yield condition for quasi-brittle and plastic orthotropic materials with initial stresses is suggested. All components of the yield tensor are determined from experiments on uniaxial loading. The reliability estimates of the criterion suggested is discussed. For a plastic material without initial stresses, the given condition transforms into the Marin—Hu criterion. The defining equations of the deformation theory of plasticity with isotropic and “anisotropic” hardening, associated with the yield condition suggested, are obtained. These equations are used as the basis for a highly accurate nonclassical continuous model for nonlinear deformation of thick sandwich plates. The approximations with respect to the transverse coordinate take into account the flexural and nonflexural deformations in transverse shear and compression. The high-order approximations allow us to model the occurrence of layer delamination cracks by introducing thin nonrigid interlayers without violating the continuity concept of the theory. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. pp. 329–340, May–June, 2000.  相似文献   

10.
The transient response of sandwich beams, plates, and shells with viscoelastic layers under impulse loading is studied using the finite element method. The viscoelastic material behavior is represented by a complex modulus model. An efficient method using the fast Fourier transform is proposed. This method is based on the trigonometric representation of the input signals and the matrix of the transfer functions. The present approach makes it possible to preserve exactly the frequency dependence of the storage and loss moduli of viscoelastic materials. The logarithmic decrements are determined using the steady state vibrations of sandwich structures to characterize their damping properties. Test problems and numerical examples are given to demonstrate the validity and application of the approach suggested in this paper. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Published in Mekhanika Kompozitnykh Materialov, Vol. 36, No. 3, pp. 367–378, March–April, 2000.  相似文献   

11.
A high-performance, corrosion-resistant biplastic pipe for high-pressure oil pipeline systems is presented. The pipe combines an outer load-carrying layer formed from unidirectionally glass-reinforced plastic (GRP) sublayers by wet multi-circuit winding and an inner sealing layer of high-density polyethylene. Both demountable and permanent joints, tees, and other parts are constructed for these pipes. The biplastic pipes ensure reliable operation of oil pipeline systems under a pressure of up to 200 bar. The experimental results and calculated estimates of the strength of biplastic pipes are presented. The results of using these pipes in oil pipeline systems in the Perm’ region are discussed. Presented at the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 3, pp. 407–418, 2000.  相似文献   

12.
An anisotropic medium is considered in which, upon loading, scattered microdamages accumulate giving rise to nonlinear and residual strains. The damage at a point of the medium is characterized by a scalar function on a unit sphere, referred to as the damage function. This function is approximated by a fourth-rank tensor used for specifying the relation between the increments of strains and stresses. The calculation dependences are presented in detail for a unidirectional composite, which is taken to be a homogeneous transversely isotropic medium. Determination of the unknown constants is illustrated by the example of an actual fiberglass plastic. Institute of Polymer Mechanics, University of Latvia, Riga, LV-1006, Latvia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 5, pp. 561–574, September–October, 1999.  相似文献   

13.
Incompressible elastic material with a periodic system of pores is considered. Processes are studied with a typical length which is much more than the typical diameter of pores and the typical distance between pores. Porous material behaves as a certain “effective” material without pores in such processes. The method of calculation of effective moduli based on mathematical homogenization theory is described. The estimates for the effective moduli are proved. The results of numerical calculations of effective moduli for materials with spherical and cubic pores are presented. The dependence of the effective moduli on the volume fracture of pores is investigated. The explicit formulae for effective coefficients are deduced. Comparison with the effective moduli for compressible materials is performed. Presented at the Ninth International Conference on the Mechanics of Composite Materials, Riga, October, 1995. Lomonosov Moscow State University, Department of Mathematics and Mechanics, Moscow. Published in Mekhanika Kompozitnykh Materialov, No. 5, pp. 579–587, September–October, 1996.  相似文献   

14.
The amorphous film surfaces of polystyrene (PS), poly(2,6-dimethyl 1,4-phenylene oxide) (PPO), and their miscible blends are brought into overlap contact below the glass transition temperature T g for 10 min and 24 h in order to obtain PS—PS, PPO—PPO, and blend—blend self-adhesive joints. It is shown that after the contact of the blend surfaces, i.e., when the molecules of both PS and PPO are present at the interface, it is possible to attain higher values of shear strength as compared with those at PS—PS and PPO—PPO interfaces. This points to the contribution of a specific interaction between the segments of PS and PPO to the strength development at the interface. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 1, pp. 127–135, 2000.  相似文献   

15.
The paper adjoins the work of B. I. Plotkin and S. M. Vovsi, Varieties of Representations of Groups (Zinatne, Riga (1983)), and turns out to be, in a sense, its continuation. In the former, the varieties of representations have been considered. As a matter of fact, the varieties under consideration are action-type varieties. This paper studies other classes of representations, axiomatizable in a special action-type logic. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 2, pp. 73–85, 2005.  相似文献   

16.
Two polyester-based polymer concretes with various volume content of diabase as an extender and aggregate are tested in creep under compression at different stress levels. The phenomenological and structural approaches are both used to analyze the experimental data. Common features of changes in the instantaneous and creep compliances are clarified, and a phenomenological creep model which accounts for the changes in the instantaneous compliance and in the retardation spectrum depending on the stress level is developed. It is shown that the model can be used to describe the experimental results of stress relaxation and creep under repeated loading. Modeling of the composite structure and subsequent solution of the optimization problem confirm the possibility of the existence of an interphase layer more compliant than the binder. A direct correlation between the interphase volume content and the instantaneous compliance of the composite is revealed. It is found that the distinction in nonlinearity of the viscoelastic behavior of the two polymer concretes under investigation can be due to the difference in their porosity. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000.) Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 2, pp. 147–164, 2000.  相似文献   

17.
In a numerical example of compromise optimization by computerized mathematical modeling (2000 realizations) for a known deterministic solution, in the case of an isotropic spatially reinforced porous composite, certain scatter characteristics of the optimal solution have been established, namely four standard deviations and six coefficients of linear correlation for four properties—density, modulus of elasticity, thermal conductivity, and linear thermal expansion coefficient. Of the 17 input data (parameters of the composite components), 10 are stochastic, the others deterministic. An equation is presented for the four-dimensional hyperellipsoid of normal distribution with numerical values of the coefficients, as well as all invariants and roots of the characteristic equation, the matrix of direction cosines of the principal axes of the hyperellipsoid, and the lengths of the principal semiaxes, depending on the dimensionality of the scattering region and the assigned probability P. The four-dimensional hyperellipsoid has been projected onto three-dimensional space and then onto a plane. A section of the scattering region has been constructed. Institute of Polymer Mechanics, Latvian Academy of Sciences, Riga LV-1006, Latvia. Translated from Mekhanika Kompozitnykh Materialov, No. 5, pp. 625–635, September–October, 1996.  相似文献   

18.
The orientation of fiber direction in layers and the number of layers of composites play the major role in determining the strength and stiffness. Thus, the basic design problem is to determine the optimum stacking sequence of the composite laminate. Many methods are available at present for the design optimization of structural systems. However, these methods are based on mathematical programming techniques involving the gradient search and the direct search. These methods assume that the variables are continuous. In this paper, a different search and optimization algorithm, known as a Genetic Algorithm (GA), has been successfully applied to obtain the optimum fiber orientation of multilayered shells, which considers the angle of fiber orientation as a discrete variable. The principle of GA is applied to obtain optimum layers and the orientation of fibers of stiffened shells for both the symmetric and antisymmetric orientations of fibers for dynamic analysis. Shells composed of two to nine layers without stiffeners, with one stiffener, and with two stiffeners for a single as well as different materials are analyzed and the maximum frequency for each population is computed using the FEAST-C software. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Published in Mekhanika Kompozitnykh Materialov, Vol. 36, No. 2, pp. 271–278, March–April, 2000.  相似文献   

19.
Fiber reinforced elastomeric matrix composites (EMCs) offer several potential advantages for construction of rotors for flywheel energy storage systems. One potential advantage, for safety considerations, is the existence of maximum stresses near the outside radius of thick circumferentially wound EMC disks, which could lead to a desirable self-arresting failure mode at ultimate speeds. Certain unidirectionally reinforced EMCs, however, have been noted to creep readily under the influence of stress transverse to the fibers. In this paper, stress redistribution in a spinning thick disk made of a circumferentially filament wound EMC material on a small rigid hub has been analyzed with the assumption of total radial stress relaxation due to radial creep. It is shown that, following complete relaxation, the circumferential strains and stresses are maximized at the outside radius of the disk. Importantly, the radial tensile strains are three times greater than the circumferential strains at any given radius. Therefore, a unidirectional EMC material system that can safely endure transverse tensile creep strains of at least three times the elastic longitudinal strain capacity of the same material is likely to maintain the theoretically safe failure mode despite complete radial stress relaxation. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompozitnykh Materialov, Vol. 31, No. 1, pp. 87–94, January–February, 2000.  相似文献   

20.
The relationship between the strength (σc) of unidirectional fiber-reinforced plastics in different stressed states and the interfacial strength of their components is investigated. The shear adhesive strength (τ0) of fiber—matrix joints determined by the pull-out technique is used as a measure of the interfacial strength. To obtain the correlation curves betweenσc andτ0, the experimental results are used, where both the plastic and adhesive strength change under the influence of a single factor. In this case, such factors are the fiber surface treatment, nature and composition of polymer matrices, and test temperature. It is shown that the strength of the glass, carbon, and boron plastics increases practically linearly with increased interfacial strength. Such a behavior is observed in any loading conditions (tension, shear, bending, and compression). Sometimes, a small (10–20%) increase in the adhesive strength induces a significant (50–70%) growth in the material strength. Therefore, the interface is the “weak link” in these composites. The shape of theσcτ0 curves for composites based on the high-strength and high-modulus aramid fibers and different thermoreactive matrices depends on the nature of the fiber and the type of stress state. In many cases, the composite strength does not depend on the interfacial strength. Then, the fiber itself is the “weak link” in these composites. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 3, pp. 291–304, May–June, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号