首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 903 毫秒
1.
Six mononuclear complexes [M(L1)2(H2O)4] (M = Co(II), 1a and M = Mn(II), 1b), [Cu(L1)2(H2O)2] (1c), [Cu(L1)2(H2O)(Py)2] (1d), [Cu(L3)(H2O)Cl] · H2O (3a) and [Co(Sal)(H2O)(Py)3] · 2ClO4 · H2O (3b) of phenoxyacetic acid derivatives and Schiff base were determined by single crystal X-ray diffraction. The Co(II) (1a) and Mn(II) (1b) complexes are isomorphous. X-ray crystal structural analyses reveal that these coordination complexes form polymeric structure via formation of different types of hydrogen bonding and π-stacking interactions in solid. Thermal analysis along with the powder X-ray diffraction data of these complexes shows the importance of the coordinated and/or crystal water molecules in stabilizing the MOF structure. Complexes 1a, 1c, 3a show marginal catalytic activity in the oxidation of olefins to epoxides in the presence of i-butyraldehyde and molecular oxygen.  相似文献   

2.
Three interpenetrated polymeric networks, {[Co(bpp)(OH-BDC)] · H2O}n (1) [Ni(bpp)1.5(H2O)(OH-BDC)]n (2) and {[Cd(bpp)(H2O)(OH-BDC)] · 2H2O}n (3), have been prepared by hydrothermal reactions of 1,3-bis(4-pyridyl)propane (bpp), 5-hydroxyisophthalic acid (OH-H2BDC), with Co(NO3)2 · 6H2O, Ni(NO3)2 · 6H2O and Cd(NO3)2 · 4H2O, respectively. Single-crystal X-ray diffraction analyses reveal that the three compounds all exhibit interpenetrated but entirely different structures. Compound 1 is a fourfold interpenetrated adamantanoid structure with water molecules as space fillers, in which bpp adopts a TG conformation (T = trans, G = gauche). Compound 2 is an interdigitated structure from the interpenetrated long arms of one-dimensional molecular ladders, while bpp in 2 adopts both TT and TG conformations. Compound 3 is a twofold interpenetrated three-dimensional network from a one-dimensional metal-carboxylate chain bridged by TG conformational bpp. The hydrogen bonding interactions in 1–3 further stabilize the whole structural frameworks and play critical roles in their constructions.  相似文献   

3.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

4.
Two new coordination polymers of copper(I) chloride and pyrazinic acid (pyz-H), namely [CuCl(pyz-H)2]·2H2O (1) and [Cu2Cl2(pyz)(H2O)]·H2O (2) have been prepared and characterized by spectroscopic, magnetic and crystallographic methods. The overall physical measurements suggest that 1 is diamagnetic and contains monodentate N-pyrazinic acid, whereas 2 is paramagnetic and contains tridentate N,N′,O- chelating bridging pyrazinato anion. In the structure of 1 as elucidated by X-ray single crystal analysis, the asymmetric units [CuCl(pyz)2] are linked together forming a zigzag chain with tetrahedral copper(I) environment. The two lattice water molecules form hydrogen bonds with the uncoordinated N atom and carboxylate group O atom of pyz-H molecules. The Cu–N bond lengths are 2.009(6) Å and Cu–Cl distances are 2.337(2) Å. Complex 2 has a three-dimensional structure with the chains [Cu(I)Cu(II)(C5H3N2O2)Cl2(H2O)] interconnected by [Cu(I)Cl2N] tetrahedral unit and [Cu(II)NO2Cl2] polyhedra. The Cu(I)–Cl and Cu(I)–N distances are 2.327(2)–2.581(2) Å and 1.988(6) Å, respectively, whereas the Cu(II)–Cl and Cu(II)–N bond lengths are 2.258(2), 2.581(2) Å, and 2.017(6) Å, respectively. Hydrogen bonds of the type O–HO are formed between lattice and coordinated water, and carboxylate oxygens of pyrazinato ligand giving rise to a three-dimensional network. The Cl anions act as bridging ligands in both complexes. The magnetic data of complex 2 have been measured from 2 to 300 K and discussed.  相似文献   

5.
A photoluminescent supramolecular compound [Cd(Hbic)2(H2O)]·(4,4′-bpy)·H2O, H2bic = 1-H-benzimidazole-5-carboxylic acid, has been synthesized and structurally characterized. With CH–π stacking and hydrogen bond, the 4,4′-bipyridine is used as template to construct the neighboring layers into a three-dimensional supramolecular architecture. Solid-state emission spectrum of compound 1 shows luminescence with emission peak at 565 nm.  相似文献   

6.
CdII complexes with glycine (gly) and sarcosine (sar) were studied by glass electrode potentiometry, direct current polarography, virtual potentiometry, and molecular modelling. The electrochemically reversible CdII–glycine–OH labile system was best described by a model consisting of M(HL), ML, ML2, ML3, ML(OH) and ML2(OH) (M = CdII, L = gly) with the overall stability constants, as log β, determined to be 10.30 ± 0.05, 4.21 ± 0.03, 7.30 ± 0.05, 9.84 ± 0.04, 8.9 ± 0.1, and 10.75 ± 0.10, respectively. In case of the electrochemically quasi-reversible CdII–sarcosine–OH labile system, only ML, ML2 and ML3 (M = CdII, L = sar) were found and their stability constants, as log β, were determined to be 3.80 ± 0.03, 6.91 ± 0.07, and 8.9 ± 0.4, respectively. Stability constants for the ML complexes, the prime focus of this work, were thus established with an uncertainty smaller than 0.05 log units. The observed departure from electrochemical reversibility for the Cd–sarcosine–OH system was attributed mainly to the decrease in the transfer coefficient . The MM2 force field, supplemented by additional parameters, reproduced the reported crystal structures of diaqua-bis(glycinato-O,N)nickel(II) and fac-tri(glycinato)-nickelate(II) very well. These parameters were used to predict structures of all possible isomers of (i) [Ni(H2O)4(gly)]+ and [Ni(H2O)4(sar)]+; and (ii) [Ni(H2O)3(IDA)] and [Ni(H2O)3(MIDA)] (IDA = iminodiacetic acid, MIDA = N-methyl iminodiacetic acid) by molecular mechanics/simulated annealing methods. The change in strain energy, ΔUstr, that accompanies the substitution of one ligand by another (ML + L′ → ML′ + L), was computed and a strain energy ΔUstr = +0.28 kcal mol−1 for the reaction [Ni(H2O)4(gly)]+ + sar → [Ni(H2O)4(sar)]+ + gly was found. This predicts the monoglycine complex to be marginally more stable. By contrast, for the reaction [Ni(H2O)3IDA] + MIDA → [Ni(H2O)3MIDA] + IDA, ΔUstr = −0.64 kcal mol−1, and the monoMIDA complex is predicted to be more stable. This correlates well with (i) stability constants for Cd–gly and Cd–sar reported here; and (ii) known stability constants of ML complex for glycine, sarcosine, IDA, and MIDA.  相似文献   

7.
Thermal decomposition of mixed ligand thymine (2,4-dihydroxy-5-methylpyrimidine) complexes of divalent Ni(II) with aspartate, glutamate and ADA (N-2-acetamido)iminodiacetate dianions was monitored by TG, DTG and DTA analysis in static atmosphere of air. The decomposition course and steps of complexes [Ni(C5H6N2O2)(C4H5NO4)2−(H2O)2]·H2O, [Ni(C5H6N2O2)(C5H7NO4)2−(H2O)2]·H2O and [Ni(C5H6N2O2)(C6H8N2O5)2−(H2O)2]·1.5H2O were analyzed. The final decomposition products are found to be the corresponding metal oxides. The kinetic parameters namely, activation energy (E*), enthalpy (ΔH*), entropy (ΔS*) and free energy change of decomposition (ΔG*) are calculated from the TG curves using Coats–Redfern and Horowitz–Metzger equations. The stability order found for these complexes follows the trend aspartate > ADA > glutamate.  相似文献   

8.
Lewis acid/base addition between Ln(NO3)3 · 6H2O (Ln = Pr, Nd, Sm, Eu, Tb and Lu) and H2salen [H2salen = N,N′-ethylenebis(salicylideneimine)] gives rise to an array of coordination polymeric structures. Crystal structural analysis reveals that Salen effectively functions as a bridging ligand in these compounds. The size of the lanthanide ions controls the structures of these Salen lanthanide complexes. Two representative structures with one dimensional and two dimensional topologies, viz. [Pr(H2salen)(NO3)3(CH3OH)2]n (1) and [Ln(H2salen)1.5(NO3)3]n [Ln = Pr (2), Nd (3), Sm (4), Eu (5), Tb (6) and Lu (7)] are reported. Luminescent spectra of complexes 4 and 5 exhibit characteristic metal-centered emission lines. However, the characteristic luminescence of the terbium(III) ion is not observed either in solution or in the solid state of complex 6.  相似文献   

9.
Three new aminodiphosphonates, namely M(phen)(AEDPH3)2·4H2O (M = Zn, (1); Ni, (2)) and Cu(phen)(AEDPH3)2·H2O (4), in addition to the previously reported Co(phen)(AEDPH3)2·4H2O (3), Cu(2,2′-bipy)(H2O)(HEDPH2)·2H2O (5), and Cu(phen)(H2O)(HEDPH2)·2H2O (6) (AEDPH4 = 1-aminoethylidenediphosphonic acid, HEDPH4 = 1-hydroxyethylidenediphosphonic acid, phen = 1,10-phenanthroline and 2,2′-bipy = 2,2′-bipyridyl), have been synthesized and characterized. These compounds are all synthesized at the similar condition (80 °C), whereas they illustrate different frameworks. Compounds 1, 2 and 3 are isomorphous, which contain two same chelate and one six-coordinated metal ion, and display a three-dimensional (3D) supramolecular structure through hydrogen bonds and π–π stacking interactions. Compound 4 contains a chelate and a monodentate , while the Cu ion is five-coordinated. The coordination model of Cu2+ in 4 is similar to that of 5 and 6. Comparing with four aminoethylidenediphosphonates, the difference of their structures is directed to the coordination model of the metal ions, while the three copper(II) diphosphonates illustrate different structures based on the deprotonized degree of the corresponding diphosphonic acids.  相似文献   

10.
Synthesized hydrated lamellar acidic crystalline magadiite (H2Si14O29·2H2O) nanocompound was used as host for intercalation of polar n-alkylmonoamine molecules of the general formula H3C(CH2)nNH2 (n = 1–6) in aqueous solution. The original interlayer distance (d) of 1500 pm, determined by X-ray powder diffraction patterns, increases after intercalation. The values correlated with the number of aliphatic amine carbon (nc) atoms: d = [(1312 ± 11) + (21 ± 2)]nc. The amount of intercalated amines (Ns), decreased as nc increased: Ns = [(5.82 ± 0.04) − (0.45 ± 0.01)]nc. The acidic layered nanocompound was calorimetrically titrated with the amines and the thermodynamic data gave exothermic values for all guest molecules, as shown by the correlation: ΔintH = −[(24.45 ± 0.49) − (1.91 ± 0.10)]nc and d = [(1576 ± 16) − (10.8 ± 1.0)]ΔintH. The negative values of the Gibbs energies and the positive entropies also presented the correlations: ΔintG = −[(22.8 ± 0.2) − (0.2 ± 0.1)]nc and ΔintS = [(6 ± 1) + (5 ± 1)]nc, respectively.  相似文献   

11.
Dan Wang  Shi-Xiong Liu   《Polyhedron》2007,26(18):5469-5476
Reactions among Cu(ClO4)2 · 6H2O, Cu(acac)2/VO(acac)2 and 3-methoxysalicylaldehyde Picoloylhydrazone in different solvents give three complexes, [Cu2L(acac)(H2O)2]ClO4 (1), [Cu4L2(acac)2(py)2](ClO4)2 (2) and (VO2)2L2Cu2(acac)2 (3) (acac = acetyl acetonate and py = pyridine). There is an extended 2D structure in complex 1 constructed by hydrogen bonds between the binuclear complex cation and the ClO4 anion, and an extended 1D structure in complex 2 constructed by weak ππ stacking interactions between neighboring cyclic tetranuclear complex molecules. Complex 3 is the first oxovanadium–copper complex with a bridging oxo oxygen atom between the V atom and the Cu atom. The solid-state photoluminescent properties of the three title complexes have been studied. There is an antiferromagnetic interaction in 1.  相似文献   

12.
Ternary terbium complexes with p-aminobenzoic acid (HL), [TbL3(DMSO)(H2O)]2 (1), [TbL3(DMF)(H2O)]2 (2) and [TbL3(Bpy)(H2O)]2·2H2O (3) (DMSO=dimethyl sulfoxide, DMF=N, N- dimethylformamide, Bpy=2, 2′- bipyridyl) have been synthesized, and their crystal structures determined. The luminescence properties of these complexes, including both the emission quantum yield and the fluorescence lifetime, have been investigated. The effect of a second ligand on the crystal structure and luminescence property of the ternary terbium p-aminobenzoic acid complexes, and the relationship between luminescence properties and crystal structure, including coordination mode of the L ligand and the characteristics of a second ligand, are discussed.  相似文献   

13.
The compound [Zn(H2O)4]2[H2As6V15O42(H2O)]·2H2O (1) has been synthesized and characterized by elemental analysis, IR, ESR, magnetic measurement, third-order nonlinear property study and single crystal X-ray diffraction analysis. The compound 1 crystallizes in trigonal space group R3, a=b=12.0601(17) Å, c=33.970(7) Å, γ=120°, V=4278.8(12) Å3, Z=3 and R1(wR2)=0.0512 (0.1171). The crystal structure is constructed from [H2As6V15O42(H2O)]4− anions and [Zn(H2O)4]2+ cations linked through hydrogen bonds into a network. The [H2As6V15O42(H2O)]6− cluster consists of 15 VO5 square pyramids linked by three As2O5 handle-like units.  相似文献   

14.
The optimized structures and proton transfer reactions of 3-methyl-5-hydroxyisoxazole and its water complexes (3-M-5-HIO · (H2O)n · (n = 0–3)) were computed at B3LYP and MP2 theoretical level. The results indicates that 3-M-5-HIO has four isomers (Ecis, Etrans, K1 and K2), and the keto tautomer, and K2 is the most stable isomer in the gas phase. Hydrogen bonding between 3-M-5-HIO and the water molecules can dramatically lower the barrier by the concerted transfer mechanism. Ecis · (H2O)3 → K1 · (H2O)3 and Ecis · (H2O)2 → K2 · (H2O)2 is found to be very efficient. Comparing with the proton transfer mechanism of 5-HIO shows that the methyl substitution prevents the intramolecular proton transfer.  相似文献   

15.
《Polyhedron》2001,20(28):306-3306
Five new complexes of composition [Cu(dpt)Ni(CN)4] (1) (dpt=dipropylenetriamine), [Cu(dien)Ni(CN)4]·2H2O (2) (dien=diethylenetriamine), [Cu(N,N′-dimeen)Ni(CN)4]·H2O (3) (N,N′-dimeen=N,N′-dimethylethylenediamine), [Cu(N,N-dimeen)Ni(CN)4]·H2O (4) (N,N-dimeen=N,N-dimethylethylenediamine) and [Cu(trimeen)Ni(CN)4] (5) (trimeen=N,N,N′-trimethylethylenediamine) have been obtained by the reactions of the mixture of Cu(ClO4)2·6H2O, appropriate amine and K2[Ni(CN)4] in water and have been characterized by IR and UV–Vis spectroscopies and magnetic measurements. The crystal structure of [Cu(dpt)Ni(CN)4] (1) has been determined by single-crystal X-ray analysis. The structure of 1 consists of a one-dimensional polymeric chain ---Cu(dpt)---NC---Ni(CN)2---CN---Cu(dpt)--- in which the Cu(II) and Ni(II) atoms are linked by CN groups. The nickel atom is four coordinate with four cyanide-carbon atoms (two cyano groups are terminal and two cyano groups (in cis fashion) are bridged) in a square-planar arrangement and the copper atom is five coordinate with two cyanide-nitrogen and three dpt-nitrogen atoms, in a distorted square-pyramidal arrangement. The temperature dependence of magnetic susceptibility (2–300 K) was measured for compound 1. The magnetic investigation showed the presence of a very weak antiferromagnetic interaction (J=−0.16 cm−1) between the copper atoms within each chain through the diamagnetic Ni(CN)4 2− ions.  相似文献   

16.
Two homochiral metal amino-carboxylate–phosphonate hybrids, namely, [Co2Cl(S-HL)(H2O)5]Cl · H2O 1 and Sr2(S-HL)(NO3)2(H2O) · H2O 2 (S-H3L = S-HO2CC4H7NCH2PO3H2) have been synthesized by the reaction of the enantiopure S-H3L ligand with cobalt(II) chloride or strontium nitrate under acidic condition at room temperature. The structure of compound 1 features a novel 3D framework with helical chains and channels. Compound 2 has a layered structure in which the 1D chains of edge-sharing SrO8 and SrO9 polyhedra are interconnected by phosphonate ligands.  相似文献   

17.
Mononuclear copper(II) complexes of a family of pyridylmethylamide ligands HL, HLMe, HLPh, HLMe3 and HLPh3, [HL = N-(2-pyridylmethyl)acetamide; HLMe = N-(2-pyridylmethyl)propionamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide], were synthesized and characterized. The reaction of copper(II) salts with the pyridylmethylamide ligands yields complexes [Cu(HL)2(OTf)2] (1), [Cu(HLMe)2](ClO4)2 (2), [Cu(HL)2Cl]2[CuCl4] (3), [Cu(HLMe3)2(THF)](OTf)2 (4), [Cu(HLMe3)2(H2O)](ClO4)2 (5a and 5b), [Cu(HLPh3)2(H2O)](ClO4)2 (6), [Cu(HL)(2,2′-bipy)(H2O)](ClO4)2 (7), and [Cu(HLPh)(2,2′-bipy)(H2O)](ClO4)2 (8). All complexes were fully characterized, and the X-ray structures vary from four-coordinate square-planar, to five-coordinate square-pyramidal or trigonal-bipyramidal. The neutral ligands coordinate via the pyridyl N atom and carbonyl O atom in a bidentate fashion. The spectroscopic properties are typical of mononuclear copper(II) species with similar ligand sets, and are consistent their X-ray structures.  相似文献   

18.
From reactions between different Cu(II) salts and the Schiff base 6-amino-5-formyl-1,3-dimethyluracil-benzoylhydrazone (H2BEZDO) in alcohol, six new copper complexes with simplified formulas [Cu(HBEZDO)(H2O)(MeOH)]NO3 (1), [CuCl(HBEZDO)(DMF)] (2), [CuBr(HBEZDO)]·2H2O (3), CuBr(HBEZDO) (4), Cu(ClO4)(HBEZDO)·H2O (5), and Cu(SO4)1/2(HBEZDO)·1 H2O (6) were isolated. The structures of compounds 1, 2 and 3 have been established by means of XRD diffraction methods. In the three compounds, the Schiff base acts as a tridentate monodeprotonated ligand through the N(6), N(51) and O(52) atoms, making two five- and six-membered chelate rings. In the structure of 1 and 2, the solvent molecules are coordinated giving square-based pyramidal environments, with the basal plane completed by a MeOH (1) or Cl (2) and the apical positions occupied by the oxygen atom of a water (1) or a DMF molecule (2). The molecular unit of the complex [CuBr(HBEZDO)]·2H2O (3) is defined by a square-plane containing the three donor atoms of the organic ligand and a bromide ligand (Cu–Br 2.384 Å), but there is a stronger tetragonally elongated pyramidal geometry around the metal, the apical position of the polyhedron being occupied by a weakly bound-to-copper bromine atom (3.086 Å) of a neighbouring molecule. This fact gives the appearance of an apparent dimer with very asymmetric bromine bridges, in which there are no exchange interactions between metal centres. Also, infrared, magnetic and EPR data of the isolated complexes are reported.  相似文献   

19.
A series of chromium(III) complexes [Cr(bipy)(HC2O4)2]Cl·3H2O (1), [Cr(phen)(HC2O4)2]Cl·3H2O (2), [Cr(phen)2(C2O4)]ClO4 (3), [Cr2(bipy)4(C2O4)](SO4)·(bipy)0.5·H2O (4) and [Mn(phen)2(H2O)2]2[Cr(phen)(C2O4)2]3ClO4·14H2O (5) were synthesized (bipy=4,4′-bipyridine, phen=1,10-phenanthroline), while the crystal structures of 1 and 3–5 have been determined by X-ray analysis. 1 and 3 are mononuclear complexes, 4 contains binuclear chromium(III) ions and 5 is a 3D supromolecule formed by complicated hydrogen bonding. 1–3 are potential molecular bricks of chromium(III) building blocks for synthesis heterometallic complexes. When we use these molecular bricks as ligands to react with other metal salts, unexpected complexes 4 and 5 are isolated in water solution. The synthesis conditions and reaction results are also discussed.  相似文献   

20.
By use of the three-layer diffusion method, reactions of flexible bipyridyl ligands (4,4′-bpp or 3,3′-bpp) with M(II) salts (M = Zn, Cd) and multi-carboxylate ligands resulted in the formation of four interesting d10 metal–organic coordination polymers: [Zn(μ-4,4′-bpp)Br2]n (1), [Zn(μ-4,4′-bpp)(1,2-bdc)]n · nH2O (2), [Zn(μ-3,3′-bpp)(1,3-bdc)]n · nCH3OH · 2nH2O (3) and [Cd(μ-3,3′-bpp)(C4H2O4)]n · 3nH2O (4) (4,4′-bpp = 2,2′-bis(4-pyridylmethyleneoxy)-1,1′-biphenylene; 3,3′-bpp = 2,2 ′-bis(3-pyridylmethyleneoxy)-1,1′-biphenylene; bdc=benzenedicarboxylate, C4H4O4 = fumaric acid). Complex 1 has a 2D sheet structure consisting of two unusual zigzag Zn(II) chains which are nearly perpendicular to each other. Complex 2 is comprised of two-leg ladders, in which [Zn(4,4′-bpp)] chains serve as the side rails and 1,2-bdc ligands serve as the cross rungs. In complex 3, every two 1,3-bdc ligands connect the neighbouring Zn(II)-3,3′-bpp dimetallic rings in η1 coordination modes into an interesting chain structure. Complex 4 consists of an anionic macrocycle-containing cadmium dicarboxylate sheets that are separated by 3,3′-bpp. These d10 metal complexes exhibit high thermal stabilities and strong luminescence efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号