首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A method for the on-line preconcentration and chromatography of trace metals, e.g., Co, Ni, Cu, Zn, Cd and Pb, on N,N,N′,N′-tetra(2-aminoethyl)ethylenediamine-bonded silica is described. The preconcentrated metals were desorbed with 0.13 M tartrate, which allows direct separation on a cation-exchange chromatographic column. The metals separated were detected by postcolumn reaction with 4-(2-pyridylazo)resorcinol and measuring the absorbances at 500 nm. Linear calibration graphs were obtained over the range 1 · 10−8−3 · 10−6 M. The synthesis and characteristics of the chelated silica are described. The method was applied to the analysis of river and interstitial sediment waters.  相似文献   

2.
The pH-dependent retention behavior of arsenobetaine, arsenocholine, trimethylarsine oxide, tetramethylarsonium iodide (cationic arsenic compounds), arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid (anionic arsenic compounds) was studied on a Hamilton PRP-1 reversed-phase column (250×4.1 mm I.D.) with 10 mM aqueous solutions of benzensulfonic acids (X-C6H4SO3; X=H, 4-HO, 3-CO2H; 4-HO-3-HO2C-C6H3SO3) as ion-pairing reagents in the pH range 2–5 using flame atomic absorption spectrometry as the arsenic-specific detector. The dependencies of the k′-values of the ‘cationic’ arsenic compounds was rationalized on the basis of the protonation/deprotonation behavior of the arsenic compounds and of the four benzenesulfonates. The results provided evidence for the formation of a cationic species from trimethylarsine oxide below pH 3. Benzenesulfonate is the most hydrophobic ion-pairing reagent causing strong retention of the cationic arsenic compounds and consequently impeding their rapid separation. With the less hydrophobic, substituted benzenesulfonates the cationic arsenic compounds had retention times not exceeding 6 min. At a flow-rate of 1.5 cm3 min−1 10 mM aqueous 3-carboxy-4-hydroxybenzenesulfonate solution adjusted to pH 3.5 allowed the separation of arsenate, methylarsonic acid, arsenobetaine, trimethylarsine oxide, the tetramethylarsonium ion, and arsenocholine within 3 min. Dimethylarsinic acid coelutes with arsenobetaine at pH 3.5, but can be separated from arsenobetaine with the same mobile phase at pH 2.5. At pH 2.5 the signals for trimethylarsine oxide, the tetramethylarsonium ion, and arsenocholine are too broad to be useful for quantification. Arsenite and methylarsonic acid cannot be separated under these conditions.  相似文献   

3.
A retention model is derived for complex anions eluted from an anion-exchange column with multiple ionic eluents containing hydrogencarbonate, carbonate, and hydroxyl species and the sample solution, containing transition metals, anions and complexing ligand. The theory is based on the generalized ion-exchange equilibrium, protonation and complex-formation equilibria. The unknown parameters of chromatographic ion-exchange equilibrium constants for sample and eluent species are determined from the experimental retention data by iterative minimization, using a non-linear regression algorithm. The model was utilized to predict the retention behaviour of CdEDTA2−, CoEDTA2−, MnEDTA2− and NiEDTA2− ions. The capacity factors of complex ions were determined for wide ranges of pH values and eluent concentrations. Good agreement was obtained between the observed and predicted retentions.  相似文献   

4.
Szczepaniak W  Ren M 《Talanta》1983,30(12):945-949
A liquid ion-exchange electrode containing a tetrachloraethane solution of the complex of bismuth(III) with 5-mercapto-3-(naphthyl-1)-1,3,4-thiadiazol-2-thione is described. The electrode is sensitive to Bi3+. The slope of the calibration graph (electrode potential vs. concentration) is 18.7 mV/pBi in the pBi range 6.5–9.5 in ammonium acetate buffer (pH = 4.0). Bivalent cations and Al(III), Fe(III) and Th(IV) do not interfere (KBi3++,M2+<10−5). The dissociation constant of bismuth acetate has been determined with the aid of the electrode.  相似文献   

5.
The separation of alkali metal (Li+, Na+, K+, Rb+ and Cs+) and ammonium cations on a C18 reversed-phase column using three anionic surfactants [sodium 1-eicosyl sulphate, sodium dodecyl benzenesulphonate and sodium dodecyl sulphate (SDS)] is described. Two methods were examined: (a) “permanent” coating, with the use of a C18 reversed-phase column previously coated with the surfactants; and (b) dynamic coating, with addition of the surfactants to the mobile phase. With method (a) the separation of the six cations was achieved with SDS. However, the retention times gradually decreased owing to dissolution of the SDS coating. Good separation was obtained with method (b), where 10 mM HNO3 containing 0.1 mM SDS was used as the mobile phase with conductivity detection, and it was applied satisfactorily to real samples. The effect of system peaks on determination is also discussed.  相似文献   

6.
A single-column chelation ion chromatographic system for the preconcentration and separation of trace transition metals is described. The system includes standard chromatographic equipment with a post-column reagent system based on the reaction with 4-(2-pyridylazo)resorcinol followed by photometric detection at 495 nm. Iminodiacetic acid bonded to 5 μm silica (Diasorb IDA) was used as a chelating stationary phase. The strong complexing ability in combination with good kinetics of complexation and ion-exchange selectivity of iminodiacetic functional groups allow both preconcentration of Mn, Co, Cd, Zn, Ni and Cu from waters of high salinity and efficient separation with the same column. The retention characteristics of alkaline-earth and transition metal ions on Diasorb IDA silica (250×4 mm I.D.) column was investigated for a variety of eluents including nitric acid, maleic, malonic, citric, dipicolinic, picolinic, tartaric and oxalic acids. The influence of ionic strength on retention of metal ions involving high nitrate and chloride concentrations was also evaluated. The baseline separation of preconcentrated metals was achieved using a three-step gradient elution scheme which involved first, flushing of the column loaded with the sample with 0.5 M KCl−0.5mMHNO3 for 10 min, followed by 80 mM tartaric acid for 20 min and finally 10 mM picolinic acid for 20 min.  相似文献   

7.
The utility of cation chromatography has been developed by the application of -histidine as a multiprotic and dipolar (zwitterionic) eluent component. The method simplifies the cation analysis. The chromatographic characteristics of this system were studied in detail with a view to determining the selectivity and the mechanism by which the cations (Na+, K+, Mg2+, Ca2+) are retained. Complete separations were observed in the isocratic run over the eluent concentration range 3.0–6.0 mM at pH below 2.0. Sensitive detection was achieved using suppressed conductivity at the pH of isoelectric point of the histidine. Retention equations are derived for mono- and divalent cations eluted from ion-exchange separation column with multiple ionic eluents. The theory is based on the extension of ion-exchange equilibrium by protonation equilibria. The selectivity data for analyte and eluent species are determined using the model from the experimental retention data by computer-assisted iterative calculations. The model was utilized to predict retention data. The results in three-dimensional retention surfaces together with species distribution graphs are presented.  相似文献   

8.
The common eluents used with a bifunctional ion-exchange column (IonPac CS5A) for separating transition metals are pyridine-2,6-dicarboxylic acid and oxalic acid (Ox). When Ox is used, cadmium and manganese co-elute. Although much research has been done to overcome the Cd2+–Mn2+ co-elution problem, the role of lithium hydroxide in separating the transition metals has received little attention. In this study, it is found that when the Ox concentration is higher than 35 mM, Cu2+ elutes after Pb2+ and Ox plays a predominant role in the retention behavior of the seven metals. When Ox concentration is lower than 35 mM especially when its concentration (25 mM) is half of the usually used standard concentration (50 mM), Cu2+ elutes before Pb2+, and at the same time, Mn2+and Cd2+ can also be baseline separated. Lithium hydroxide plays a predominant role in the separation of the metals separated by cation exchange. So, lithium hydroxide is used to adjust the pH of the eluent. The use of an isocratic elution (25 mM Ox/LiOH/2 mM Na2SO4, pH 3.88) allows the separation of seven metals (Cu2+, Pb2+, Co2+, Mn2+, Cd2+, Zn2+ and Ni2+) in a single run. The effects of inorganic modifiers such as NaNO3, Na2SO4 and Na4P2O7 on retention behavior of the metals are also investigated.  相似文献   

9.
Flieger A  Przeszlakowski S 《Talanta》1985,32(12):1141-1144
The retention of palladium and platinum complexes with nitroso-R-salt on silica gel treated with Aliquat 336 has been investigated. The complexation of platinum with nitroso-R-salt (NRS) requires heating of H2PtCl6 with an excess of NRS at 100°. The affinity of the complexes for an Aliquat 336 stationary phase increases in the following order: PdCl42− ˜ Pt-NRS < PtCl62− Pd-NRS. The complexes of palladium and platinum can be separated by column chromatography on silica treated with Aliquat 336 and eluted with 0.25M perchloric acid (Pt) and 1M perchloric acid (Pd).  相似文献   

10.
李新庭  梁鹏  周玉凤  乔晓强 《色谱》2020,38(11):1263-1269
膜脂作为细胞质膜的主要组成部分,在生命活动中扮演着重要的作用,其涉及多种重要疾病的发生和发展过程。发展适用于膜脂分离分析的新型色谱材料对于其后续结构和生物学功能研究具有重要的意义。该文选用具有潜在生物相容性的离子液体溴化1-乙烯基-3-十二烷基咪唑(1-vinyl-3-dodecylimidazole bromide,VDI)为功能单体,通过一步法点击反应将其接枝到巯基功能化硅球表面,制备得到了新型溴化1-乙烯基-3-十二烷基咪唑硅胶键合固定相(Sil-VDI)。利用傅里叶变换红外光谱仪和热重分析仪对Sil-VDI固定相材料的结构进行表征,结果证明Sil-VDI色谱固定相已被成功制备。保留机制研究显示填充Sil-VDI色谱柱具有典型的反相/离子交换混合模式保留特性。基于此,采用不同疏水性物质烷基苯、多环芳烃、苯胺、苯衍生物和无机阴离子BrO3 - 、NO3 - 和IO3 - 为测试物,对所制备固定相的色谱性能进行了研究。结果表明,该固定相对4类疏水性物质和无机阴离子均有较好的分离选择性和良好的峰对称性。进一步研究了所制备的Sil-VDI色谱柱对鸡蛋黄磷脂和肺腺癌细胞提取膜脂的分离效果,结果显示Sil-VDI色谱柱对2种磷脂样品均显示出了良好的分离能力。该文所制备的Sil-VDI色谱固定相合成方法简便,具有良好的分离分析应用潜能,后续工作会进一步研究该固定相在生物样品中的分离分析性能。  相似文献   

11.
Summary The mechanism of the separation of selected transition and heavy metals on a C 18 column permanently coated with sodium dodecylsulphate (SDS) in the presence of complexing agents (tartrate and oxalate anions) was investigated. The effect of the ligand concentration and of the mobile phase pH on the retention of analytes was studied in the first place. Relations were established between the capacity factor of the analytes and the ligand concentration in the mobile phase on the assumption that the retention is governed by an ion-exchange mechanism. It was found that in most cases the reciprocal value of the capacity factor is a linear function of the ligand concentration (at constant concentration of the eluting cation), which is consistent with the derived relations.  相似文献   

12.
Ion-exclusion chromatography–cation-exchange chromatography was developed for the simultaneous separation of common inorganic anions and cations (Cl, NO3 and SO42−; Na+, NH4+, K+, Mg2+ and Ca2+) on a weakly acidic cation-exchange column by elution with weak acid. Generally, the resolution among these monovalent cations was only moderate, thereby hindering the determination of these analytes in natural-water samples. Therefore, 18-crown-6 was added to the eluent to improve the resolution. A good separation of these anions and cations on a weakly acidic cation-exchange column was achieved in 30 min by elution with 5 mM tartaric acid/6 mM 18-crown-6/methanol–water (7.5:92.5). The ion-exclusion chromatography–cation-exchange chromatography method developed here was successfully applied to the separation of major anions and cations in an environmental water sample.  相似文献   

13.
The difficulty in using conventional ion chromatography for the determination of sulfate, thiosulfate, dithionate and polythionates (tri-, tetra-, penta- and hexathionate) in their mixtures, comes mainly from very late elutions of polythionates due to their strong retentions onto a separating column. Rapid and sensitive determination of these sulfur oxyanions has been achieved by ion-pair chromatography using a silica octadecylsilane (ODS) column with mobile phases of 10% or 20% (v/v) acetonitrile in water (pH, 5.0) containing 0.2 mM phthalate and 7 mM tetrapropylammonium salt (TPAOH). The sulfur species separated on the column were monitored with a conductivity detector after passing through a micro membrane suppressor in the H+ form. When an acetonitrile-water (10:90, v/v) mobile phase (pH, 5.0) of 0.2 mM phthalate and 7 mM TPAOH was used at a flow-rate of 0.8 ml min−1, sulfate, thiosulfate, dithionate and trithionate were eluted at short retention times of 9.1, 9.7, 11.4 and 15.8 min, respectively; however, the higher polythionates required more than 30 min to elute. When the concentration of acetonitrile in the mobile phase was raised to 20% (v/v), all polythionates of tri- to hexathionate were completely separated from their mixtures within 21 min; in this instance, both sulfate and thiosulfate failed to be resolved due to their close retention times. Good recoveries were obtained for these sulfur oxyanions when added to various hot-spring water samples.  相似文献   

14.
A rapid and low-cost means of developing a working prototype for a positive-displacement driven open tubular liquid chromatography (OTLC) analyzer is demonstrated. A novel flow programming and injection strategy was developed and implemented using soft lithography, and evaluated in terms of chromatographic band broadening and efficiency. A separation of two food dyes served as the model sample system. Sample and mobile phase flowed continuously by positive displacement through the OTLC analyzer. Rectangular channels, of dimensions 10 μm deep by 100 μm wide, were micro-fabricated in poly-dimethylsiloxane (PDMS), with the separation portion 6.6 cm long. Using a novel flow programming method, in contrast to electroosmotic flow, sample injection volumes from 0.5 to 10 nl were made in real-time. Band broadening increased substantially for injection volumes over 1 nl. Although underivatized PDMS proved to be a sub-optimal stationary phase, plate heights, H, of 12 μm were experimentally achieved for an unretained analyte with the rectangular channel resulting in a reduced plate height, h, of 1.2. Chromatographic efficiency of the unretained analyte followed the model of an OTLC system limited by mass-transfer in the mobile phase. Flow rates from 6 nl min−1 up to 200 nl min−1 were tested, and van Deemter plots confirmed plate heights were optimum at 6 nl min−1 over the tested flow rate range. Thus, the best separation efficiency, N of 5500 for the 6.6 cm length separation channel, was achieved at the minimum flow rate through the column of 6 nl min−1, or 3 ml year−1. This analyzer is a low-cost sampling and chemical analysis tool that is intended to complement micro-fabricated electrophoretic and related separation devices.  相似文献   

15.
Low levels of carbonate and nitrite contained in inorganic matrices were determined by ion chromatography on an Asahipak ODP-50 poly(vinyl alcohol) gel-based reversed-phase column. With an acidic mobile phase, inorganic matrix anions and cations eluted near the void volume of the column, whereas carbonate and nitrite were retained and separated completely from the matrix ions. After the separation column, the peak response was enhanced using a cation-exchange hollow fibre and 25 mM sodium sulphate or alkaline enhancers. Sea-water samples can be applied directly for the determination of carbonate and added nitrite at ppm levels. The maximum sample volume that can be loaded on the column without peak deformation depended on the pH of the sample solution and the sulphuric acid concentration in the eluent. A 50 μl sea-water sample was applicable with a 2.5 mM acid eluent.  相似文献   

16.
The feasibility of using capillary columns equipped with silica frits and packed with a polymer-based anion exchanger (Dionex AS9-HC) for CEC separations of inorganic anions has been investigated. Experiments using a conventional 25 cm packed bed, and mobile phase flow that is a combination of hydrodynamic and electroosmotic flow were used to demonstrate that by varying the applied voltage (electrophoresis component) or the concentration of the competing ion in the mobile phase (ion-exchange component), considerable changes in the separation selectivity could be obtained. Using an artificial neural network, this separation system was modelled and the results obtained used to determine the optimum conditions (9 mM perchlorate and −10 kV) for the separation of eight inorganic anions. When a short (8 cm) packed bed was used, with detection immediately following the packed section, the separation of eight test analytes in under 2.2 min was possible using pressure-driven flow and a simple step voltage gradient. A more rapid separation of these analytes was obtained by only applying high voltage (−30 kV), where many of the same analytes were separated in less than 20 s and with a different separation selectivity to that obtained in conventional ion-exchange or capillary electrophoresis separations.  相似文献   

17.
The retention and detection behavior of common mono- and divalent cations (M+, alkali metal (Li+, Na+, K+, Rb+, Cs+) and ammonium ions (NH4+); M2+, alkaline earth metal ions (Mg2+, Ca2+, Sr2+, Ba2+) was examined using an ODS column (150×4.6 mm I.D.) and conductivity (CD)/UV detection. The results obtained were as follows: (1) for M+, the mobile phase, 0.1 mM sodium dodecyl sulphate (SDS)+10 mM HNO3 and indirect CD detection were effective. (2) Addition of Ce(III) in the mobile phase accelerated the elution of both M+ and M2+. The separation of above 10 cations on an ODS column was achieved for the first time without any coelution of cations and disturbance by system peak. Addition of higher SDS resulted in good separation of M+ and M2+ with longer retention times. CD detection was possible for M+ and M2+ and UV detection for M2+. (3) For M2+, the mobile phase, 0.8 mM Ce(III)+0.1 mM SDS+1 mM HNO3 and indirect UV detection were effective. The IC methods were applied to real samples.  相似文献   

18.
A study into the optimisation and selectivity of a reversed-phase ion-interaction liquid chromatographic method for the separation of metallo-cyanide complexes is described. A stable ion-interaction system was developed in which a C18 stationary phase was equilibrated with a 60 mM solution of tetrabutylammonium hydroxide ion-interaction reagent in order to saturate the stationary phase and to minimise retention changes caused by adsorption and desorption of this material. The effects on retention of the metallo-cyanide complexes caused by changes in pH and ionic strength were minimised through the addition of a high concentration of a phosphate buffer (150 mM)to the mobile phase. Perchlorate (0.32–5.62 mM) was then added to the mobile phase as a competing anion and its effect upon the capacity factors of each complex determined. A linear relationship between the logarithm of capacity factor and the logarithm of the concentration of perchlorate was observed, although the slopes of these plots were not accordance with those predicted by a simple ion-exchange model. However, the linearity of the data allowed a simple optimisation procedure to be applied and the concentration of perchlorate could be used to manipulate the separation selectivity of the system. Three differing elution orders of metallo-cyanide complexes were achieved by varying the concentration of perchlorate in the mobile phase within the range 0.94–5.62 mM.  相似文献   

19.
A simple and precise method was developed for the analytical and preparative reversed-phase HPLC separation of a mixture of epimeric pavine N-oxides containing 49.1% of (−)-thalimonine N-oxide A and 50.1% of (−)-thalimonine N-oxide B isolated from Thalictrum simplex L. (Ranunculaceae). A reversed-phase system with Nucleosil C18 analytical and preparative columns and ethanol-1.5% aqueous orthophosphoric acid (15:85) as the mobile phase was used. The epimeric pavine N-oxides were completely separated within 50 min.  相似文献   

20.
Flow injection (FI) was coupled to ion-pair reversed phase high performance liquid chromatography (IP-RPHPLC) for the simultaneous analysis of some metal-4-(2-pyridylazo) resorcinol (PAR) chelates. A simple reverse flow injection (rFI) set-up was used for in-line complexation of metal-PAR chelates prior to their separation by IP-RPHPLC. The rFI conditions were: injection volume of PAR 85 μL, flow rate of metal stream 4.5 mL min−1, concentration of PAR 1.8 × 10−4 mol L−1 and the mixing coil length of 150 cm. IP-RPHPLC was carried out using a C18 μBondapak column with the mobile phase containing 37% acetonitrile, 3.0 mmol L−1 acetate buffer pH 6.0 and 6.2 mmol L−1 tetrabutylammonium bromide (TBABr) at a flow rate of 1.0 mL min−1 and visible detection at 530 and 440 nm. The analysis cycle including in-line complexation and separation by IP-RPHPLC was 16 min, which able to separate Cr(VI) and the PAR chelates of Co(II), Ni(II) and Cu(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号