首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulations with a quantum molecular dynamics (QMD) method (MD with MO) were demonstrated on the thermal decomposition of lignin monomer at the ground state including excited and positive charged states. Geometry and energy optimized results of the lignin monomer at the singlet and triplet states in single excitation, and at (+2) positive charged state by semi-empirical AM1 MO calculations were used as the initial MD step of QMD calculations. In the QMD calculations, we controlled the total energy of the system using Nóse-Hoover thermostats in the total energy range of 0.69-0.95 eV, and the sampling position data with a time step of 0.5 fs were carried out up to 5000 steps at 50 different initial conditions. The calculated neutral, positive and negative charged fragment distributions of the monomer model with 0.82 eV energy control were obtained as 90.6, 3.5, and 5.9% to the total fragments, respectively. The ratios seem to correspond well with to the values observed experimentally in SIMS.  相似文献   

2.
Simulations by a quantum molecular dynamics (QMD) (MD with MO) method were demonstrated on the thermal decomposition of PS and PET polymers using the model molecules at the ground state including excited and positive charged states. For the excited and positive charged model molecules, we adopted CH3CHC6H5CH3 and CH3OCOC6H4COOCH3 of PS and PET monomers, respectively at the singlet and triplet states in single excitation, and at (+2) positive charged state by semiempirical AM1 MO method. Geometry and energy optimized results of the excited and positive charged models by MO calculations were used as the initial MD step of QMD calculations. In the QMD calculations, we controlled the total energy of the system using Nosé-Hoover thermostats in the total energy range of 0.69-0.95 eV, and the sampling position data with a time step of 0.5 fs were carried out up to 5000 steps at 60 different initial conditions. The calculated neutral, positive and negative charged fragment distributions of PS and PET models with 0.82 eV energy control were obtained as (93.5, 2.3, and 4.3%), and (87.8, 5.3, and 6.9%) to the total fragments, respectively. The ratios seem to correspond well to the values observed experimentally in SIMS.  相似文献   

3.
The photoluminescence spectra of the 4-n-pentyl-4′-cyanobiphenyl (5CB) liquid crystal have been investigated in detail at low temperatures 4.2-200 K, for the first time. The spectral data obtained are compared to the results of the luminescence study for the 5CB nematic phase at Т=300 K. The luminescence of the 5CB crystal state is characterized by emissions of both monomer and dimer structures. Besides, there are several energetically and conformationally non-equivalent types of monomers and dimers, and their amounts change with the temperature growth non-monotonously. The 5CB several crystal modifications, having different 5CB monomer and dimer conformers, have been found out below T=160 K. The 5CB crystal-crystal transition at Т=80 K is characterized with a total loss of the fine structure in the 5CB photoluminescence spectrum and a disappearance of the spectral band at 343 nm. At T=140 K, a new spectral band at 424 nm appears; it corresponds to the significantly overlapping 5CB dimers, its intensity grows under further heating. The present investigation gives a tool for the further characterization of the molecular alignments and changes in the 5CB molecular conformations, using the monomer and excimer fluorescence emissions as a probe. The conclusions made are confirmed by the IR-spectroscopy data, measured and analyzed for the 5CB in the same temperature region.  相似文献   

4.
The atomic structures of indium (In) on silicon (Si) (1 0 0)-(2 × 1) surface are investigated by the local density approximation using first-principles pseudopotentials. Total energy optimizations show that the energetically favored structure is the parallel ad-dimer model. The adsorption energy of In on ideal Si(1 0 0)-(1 × 1) surface is significantly higher than that on reconstructed Si(1 0 0)-(2 × 1) surface, suggesting that In adsorption does not break the Si-Si dimer bond of the substrate. When Si surface contains single dimer vacancy defects, In chain will be interrupted, leading to disconnected In nanowires. Displacive adsorption of In on Si(1 0 0) is also considered, and the calculation suggests that interdiffusion of In into Si substrate will not be favorable under equilibrium conditions.  相似文献   

5.
We present first principle total energy calculation of Pt induced reconstructions on Ge(001)-(1×2) surface with dimerization. Study was undertaken using localized orbitals basis set DFT using SIESTA to compare pure Ge dimerized Ge(001)-(1×2) surface with 0.5 and 1.0 Pt covered dimerized Ge(001)-(1×2) surface with the possibility of homo (Ge-Ge and Pt-Pt) and hetro (Pt-Ge) dimers. From total energy calculation results we calculated dimer bond lengths, buckling angles and formation energy of dimers on Ge(001)-(1×2) surface. By calculating the formation energy of different configurations we find that Ge-Ge buckled dimerized surface has least (−1.23 eV/dimer) and Pt-Pt symmetric dimerized surface has largest (+0.09 eV/dimer) formation energy with respect to unreconstructed surface. We further calculated the electronic DOS and band structure of Ge dimerized as well as Pt dimerized surface to see the change in semiconducting behavior on dimerization. By comparing the DOS and electronic band structure of homo Ge dimerized surface, we found metallicity of Ge(001)-(1×2) surface results from dimer formation. Also by comparing the electronic band structure of homo Ge dimerized surface with unreconstructed surface we find that less number of bands crossing the Fermi level which is perhaps due to the saturation of one dangling bond per Ge surface atom. By introducing Pt at 0.5 and 1.0 coverage in place of Ge, except for homo Pt buckled dimerized surface having 1.0 coverage of Pt, we find in all other cases increase in number of bands are crossing the Fermi level, indicating strong metallic behavior of Ge(001)-(1×2) surface.  相似文献   

6.
The title subjects (in the vapor phase) were assessed to be in the weak-coupling limit as Frenkel-type excitons of a La-type excited state, by examining reported data on these systems: (1) Lb/La interconversion by dimerization (in the solution) just like what happens in the monomer by the change of solvent polarity, e.g., from 3-methylpentane to ethanol. (2) Good correspondence between the monophotonic excitation spectrum of the tautomer fluorescence (after excited-state double proton-transfer reaction of the dimer) and mass-selected (2 + 2) photoionization spectrum of the dimer, as is predicted theoretically. (3) Potential minima for locally excited configurations, as were predicted by ab initio calculations. Comments on the current controversy about the mechanism of its excited-state tautomerization, i.e., whether it is of one step or two steps, are made as well.  相似文献   

7.
The c(4 × 2) structures in (0 0 1) surfaces of Si and Ge have been studied by low-energy electron diffraction (LEED). Using a proper cleaning method for the Si surface, we were able to observe clear c(4 × 2) LEED patterns up to incident energy of ∼400 eV as well as the Ge surface. Extensive experimental intensity-voltage curves allowed us to optimize the asymmetric dimer model up to the eighth layer (including the dimer layer) in depth in the dynamical LEED calculation. Optimized structural parameters are almost the same for the Si and Ge except for the height of the buckled-up atom of the asymmetric dimer. For the Ge surface, the structural parameters are in excellent agreement with those obtained by a previous theoretical calculation. The tilt angle and bond length of the dimer are 18 ± 1 (19 ± 1)° and 2.4 ± 0.1 (2.5 ± 0.1) Å for the Si(0 0 1) (Ge(0 0 1)), respectively.  相似文献   

8.
The diffusion pathways of Pb adatoms and ad-dimers on Si(1 0 0) are investigated by first-principles calculations. Pb adatoms are found to diffuse on top of the Si(1 0 0) dimer row with an energy barrier of 0.31 eV. However, Pb dimers are energetically more stable. Pb dimers on top of the dimer row have a high energy barrier (0.95 eV) to rotate from the lowest energy configuration to the orientation parallel to the underlying Si(1 0 0) dimer row. Once the ad-dimer is oriented parallel to Si(1 0 0) dimer row, they can diffuse along the dimer row with an energy barrier of only 0.32 eV.  相似文献   

9.
We report on gain-saturated operation of the 4d → 4p, J = 0-1, 11.4 nm soft-X-ray laser line in Ni-like antimony (Sb) at a pump energy of only 2.5 J. The driving laser used was a 1054 nm Nd:glass CPA laser system with a pulse duration of 7 ps (FWHM). The pump beam was focused with a tilted on-axis parabolic mirror in a grazing-incidence (GRIP) pumping configuration at an incidence angle of 45°. A fraction of 2.8% of the pump energy (∼70 mJ) was used for the prepulse, which was propagated along the same beam line as the main pulse and arrived at the target 4.4 ns before the main pulse.  相似文献   

10.
We fabricated azo dye (methylorange) doped poly vinyl alcohol (MO/PVA) thin films and measured the photoinduced birefringence (PIB) kinetics for several pump beam intensities and for various MO concentrations by using the pump-probe technique. A novel approach to explain the transient behaviors of the photoinduced anisotropy is presented by employing an empirical stretched exponential time response in the course of the trans-cis-trans photoisomerization of azo molecules and is compared with the experimental data, showing excellent agreement. The stretched exponent is estimated to be β = 0.34 ± 0.04, revealing amorphous nature of the MO/PVA system.  相似文献   

11.
K.L. Man  M.S. Altman 《Surface science》2006,600(5):1060-1070
The growth and oxidation of Cr films on the W(1 0 0) surface have been studied with low energy electron microscopy (LEEM) and diffraction (LEED). Cr grows in a Stranski-Krastanov (SK) mode above about 550 K and in a kinetically limited layer-by-layer mode at lower temperature. Stress relief in the highly strained pseudomorphic (ps) Cr film appears to be achieved by the formation of (4 × 4) periodic inclusions during the growth of the third layer between 575 and 630 K and by growth morphological instabilities of the third layer at higher temperature. Kinetic or stress-induced roughening is observed at lower temperature. In the SK regime, three-dimensional (3D) Cr islands nucleate after the growth of three Cr layers. 3D island nucleation triggers dewetting of one layer from the surrounding Cr film. Thus, two ps Cr layers are thermodynamically stable. However, one and two layer ps Cr films are unstable during oxidation. 3D clusters, that produce complex diffraction features and are believed to be Cr2O3, are formed during oxidation of one Cr layer at elevated temperature, T ? 790 K. The single layer Cr film remains intact during oxidation at T ? 630 K. 3D bulk Cr clusters are formed predominantly during oxidation of two ps Cr layers.  相似文献   

12.
The Ga-adsorbed structure on Si(1 1 3) surface at low coverage has been studied by scanning tunneling microscopy (STM). The bright protrusion corresponding to the position of the dimer without the interstitial Si atom of the clean surface disappeared in the filled-state STM image after Ga adsorption, although the protrusion due to the Si adatom still remained. On the basis of the adatom-dimer-interstitial (ADI) model, this result indicates that the Ga atom is adsorbed interstitially at the center of another pentamer that does not have the interstitial Si atom. An ab initio calculation was performed and STM images were simulated.  相似文献   

13.
Temperature dependent molecular interaction of oxazine dyes, viz., brilliant cresyl blue (C.I. Basic dye), cresyl violet (C.I. Basic violet 3) and nile blue (C.I. Basic blue 12) are studied in aqueous media within a concentration range of 5.0 × 10− 6 M to 8.0 × 10− 4 M by UV-visible absorption spectroscopy. The effect of temperature on the geometrical structure of the dimer in solution along with the dimerization equilibria is explained in terms of electrostatic and hydrophobic interactions. Modified non-covalent interaction between two monomer molecules in a dimer as a function of temperature affects the extinction coefficient as well as the geometrical disposition of the dimers and this is well manifested in the exciton splitting of the dimer spectra. The angle θ between main oscillators of the two monomer molecules in a dimer increases by 1.94° for brilliant cresyl blue, whereas an increase of 4.32° and 1.73° were observed for cresyl violet and nile blue respectively due to the increase of temperature from 20 °C to 60 °C.  相似文献   

14.
Steps on Si(0 0 1) surfaces which are initially not aligned along the high symmetry directions of the dimer reconstruction are observed, by scanning tunneling microscopy, to “rotate” toward [1 1 0] directions during Si growth. This step “rotation” occurs due to a faceting of the step edges. A theoretical analysis of adatom incorporation into the steps shows that this kinetic instability may be caused by a suppressed mobility of the growing species along the SA step edge.  相似文献   

15.
In this study, the interaction of CF with the clean Si(1 0 0)-(2 × 1) surface at normal incidence and room temperature was investigated using molecular dynamics simulation. Incident energies of 2, 12 and 50 eV were simulated. C atoms, arising from dissociation, preferentially react with Si to form Si-C bonds. A SixCyFz interfacial layer is formed, but no etching is observed. The interfacial layer thickness increases with increasing incident energy, mainly through enhanced penetration of the silicon lattice. Silicon carbide and fluorosilyl species are formed at 50 eV, which is in good agreement with available experimental data. The level of agreement between the simulated and experimental results is discussed.  相似文献   

16.
M. Çakmak  E. Mete 《Surface science》2007,601(18):3711-3716
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the effect of hydrogenation on the atomic geometries and the energetics of substitutional boron on the generic Si(0 0 1)-(1 × 2) surface. For a single B atom substitution corresponding to 0.5 ML coverage, we have considered two different sites: (i) the mixed Si-B dimer structure and (ii) boron substituting for the second-layer Si to form Si-B back-bond structure, which is energetically more favorable than the mixed Si-B dimer by 0.1 eV/dimer. However, when both of these cases are passivated by hydrogen atoms, the situation is reversed and the Si-B back-bond case becomes 0.1 eV/dimer higher in energy than the mixed Si-B dimer case. For the B incorporation corresponding to 1 ML coverage, among the substitutional cases, 100% interdiffusion into the third layer of Si and 50% interdiffusion into the second layer of Si are energetically similar and more favorable than the other cases that are considered. However, when the surface is passivated with hydrogen, the B atoms energetically prefer to stay at the third layer of the Si substrate.  相似文献   

17.
An end pumped Nd:YAP laser at 1341 nm is actively mode locked and passively Q-switched. Pumping was done with a pulsed high power laser diode with maximum power 425 W. V3+:YAG with 61% initial transmission served as saturable absorber, and an acousto-optic modulator is used for active mode locking. The output pulse train with 69 ns duration has a total energy of 3.2 mJ with ±4% shot-to-shot fluctuation. The peak output energy of a single mode locked pulse is 0.25 mJ. The pulse duration of a single mode locked pulse is less than 800 ps. The output laser beam is nearly diffraction limited with 1.6 mm diameter, and beam propagation factor M2 about 1.3.  相似文献   

18.
Two organic polysulfides, dipropyl trisulfide (DPTS) and 3,5-diisopropyl-1,2,4-trithiolane (DIPTT) in mineral oil (MO) and synthetic diester (DE) were investigated on thermal films and tribofilms by using X-ray absorption near edge structure (XANES) spectroscopy. The results of surface analysis reveal that the thermal films formed from MO for two additives are consist of sulfate and sulfite, while the distinct composition of the films from DE implies the different sensitivity to oxygen between two compounds. As to the tribofilms, “hydrosulfite-like compound” is differentiated from sulfite and FeSx (1 < x < 2) is detected in low energy region from DPTS/MO, as well as a lower concentration of DPTS/DE. At a high concentration in DE, the surface of sample for DPTS is full of iron sulfide. With regard to DIPTT, iron sulfite is the exclusive oxidized form of sulfur instead of “hydrosulfite-like compound” in the tribofilms, which is an evidence suggesting a mechanism involving a role played by a thiyl radical.  相似文献   

19.
The high-pressure phase transition of CS2 was studied by combing ab initio molecular dynamics with total energy calculations. At 300 K the pieces of polymer structure were found to appear at 10 GPa in the molecular dynamics run, and further the CS4 tetrahedral structure to appear at about 20 GPa. The phase transition was then studied in the structure of Cmca, α-quartz and β-quartz by using the first-principle total energy calculation method. A phase transition from Cmca to β-quartz was found at 10.6 GPa. The calculated lattice constants of β-quartz at atmospheric pressure are a=5.44 and c/a=1.138 with B0=95 GPa. The calculation has also indicated that CS2 decomposes at 20 GPa and below 1000 K.  相似文献   

20.
Corrosion-related defects of pure iron were investigated by measuring Doppler broadening energy spectra (DBES) of positron annihilation and positron annihilation lifetime (PAL). Defect profiles of the S-parameter from DBES as a function of positron incident energy up to 30 keV (i.e. ∼1 μm depth) were analyzed. The DBES data show that S-parameter increases as a function of positron incident energy (mean depth) after corrosion, and the increase in the S-parameter is larger near the surface than in the bulk due to corrosion. Furthermore, information on defect size from PAL data as a function of positron incident energy up to 10 keV (i.e. ∼0.2 μm depth) was analyzed. In the two-state trapping model, the lifetime τ2 = 500 ps is ascribed to annihilation of positrons in voids with a size of the order of nanometer. τ1, which decreases with depth from the surface to the bulk, is ascribed to the annihilation of positrons in dislocations and three-dimensional vacancy clusters. The corroded samples show a significant increase in τ1 and the intensity I2, and near the surface the corroded iron introduces both voids and large-size three-dimensional vacancy clusters. The size of vacancy clusters decreases with depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号