首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fine particles of photoactive anatase-type TiO2 coated polyvinyl alcohol (PVA) fibers (TiO2/PVA) were prepared successfully via a simple dip-coating method. Tetrabutyl orthotitanate (TBOT) was hydrolyzed in presence of hydrolysis control agent tetrabutylammonium hydroxide (TBA)OH and the TiO2 fine particles were crystallized under microwave (MW) irradiation. The X-ray diffraction (XRD) and selected-area electron diffraction (SAED) analyses indicated that the fine particles obtained with MW irradiation have much higher crystallinity with a single phase anatase compared with the non-MW-treated solution. The continuous layers of titania were found on PVA fibers by the scanning electron microscopy (SEM) analysis. The fibers with anatase coatings showed high photocatalytic property on the photodegradation of methylene blue (MB) and high antibacterial activity.  相似文献   

2.
Laser shock processing (LSP) or laser shock peening is a new technique for strengthening metals. This process induces a compressive residual stress field, which increases fatigue crack initiation life and reduces fatigue crack growth rate. Specimens of 6061-T6 aluminum alloy are used in this investigation. A convergent lens is used to deliver 2.5 J, 8 ns laser pulses by a Q-switch Nd:YAG laser, operating at 10 Hz. The pulses are focused to a diameter of 1.5 mm onto aluminum samples. Density of 2500 pulses/cm2 with infrared (1064 nm) radiation was used. The effect of an absorbent overlay on the residual stress field using this LSP setup and this energy level is evaluated. Residual stress distribution as a function of depth is assessed by the hole drilling method. It is observed that the overlay makes the compressive residual stress profile move to the surface. This effect is explained on the basis of the vaporization of the coat layer suppressing thermal effects on the metallic substrate. The effect of coating the specimen surface before LSP treatment may have advantages on improving wear and contact fatigue properties of this aluminum alloy.  相似文献   

3.
Poly (vinyl alcohol) (PVA) and poly (vinyl pyrrolidone) (PVP) nanofibers embedding Ag nanoparticles (5–18 nm) have been prepared successfully by electrospinning at room temperature. Scanning electron microscope (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier transform IR spectra (FTIR), and Raman scattering were used to characterize the structure and properties of Ag nanoparticle-embedded PVA and PVP nanofibers before and after heat treatment at different temperature. The antibacterial activity of Ag nanoparticle-embedded PVP nanofibers after heat treatment was also tested, which indicated that the biological activity of yeast cells was effectively inhibited by these Ag nanoparticle-embedded PVP nanofibers.  相似文献   

4.
YVO4:Sm3+ films were deposited on Al2O3 (0 0 0 1) substrates at various oxygen pressures changing from 13.3 to 46.6 Pa by using the pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by means of X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The XRD pattern confirmed that YVO4:Sm3+ film has zircon structure and the AFM study revealed that the films consist of homogeneous grains ranging from 100 to 400 nm. The room temperature photoluminescence (PL) spectra showed that the emitted radiation was dominated by a reddish-orange emission peak at 602 nm radiating from the transition of (4G5/26H7/2). The crystallinity, surface morphology, and photoluminescence spectra of thin-film phosphors were highly dependent on the deposition conditions, in particular, the substrate temperature. The surface roughness and photoluminescence intensity of these films showed similar behavior as a function of oxygen pressure.  相似文献   

5.
In this study, poly (vinyl alcohol) (PVA) composites reinforced by multiwall carbon nanotubes (MWCNTs) functionalized with either phenolic hydroxyl groups (MWCNTs-f-OH) or PVP molecule (PVP@MWCNTs) were fabricated. The objective was to elucidate the effect of different MWCNTs surface functionalization on the mechanical properties of the nanocomposites. It was found that both of PVP@MWCNTs and MWCNTs-f-OH had a good dispersion in PVA matrix. However, the MWCNTs-f-OH had stronger effective interfacial interaction with PVA matrix than PVP@MWCNTs, owe to the formation of hydrogen bonds between MWCNTs-f-OH and PVA. The stress-strain measurements showed that the Young’s modulus and tensile strength of MWCNTs-f-OH/PVA with only 1.0 wt.% contents increased by 200 and 100% compare with that of PVA, respectively. The findings of this experimental study emphasized the critical role of MWCNTs surface morphology in determining the mechanical properties of nanocomposites, and shed new light on understanding and advancing the properties of carbon nanotube based composites.  相似文献   

6.
Dental implants are usually made from commercially pure titanium or titanium alloys. The purpose of this study was to evaluate the influence of surface treatment to low modulus Ti-24Nb-4Zr-7.9Sn (TNZS) on cell and bone responses. The TNZS alloy samples were modified using anodic oxidation (AD). Surface oxide properties were characterized by using various surface analytic techniques, involving scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS), X-ray diffractometry (XRD) and surface profilometer. During the AD treatment, porous titanium oxide layer was formed and Ca ions were incorporated into the oxide layer. The viability and morphology of osteoblasts on Ca-incorporated TNZS were studied. The bone responses of Ca-incorporated TNZS were evaluated by pull-out tests and morphological analysis after implantation in rabbit tibiae. The non-treated Ti and TNZS samples were used as the control. Significant increases in cell viability and pull-out forces (p < 0.05) were observed for Ca-incorporated TNZS implants compared with those for the control groups. Porous structures supplied positive guidance cues for osteoblasts to attach. The enhanced cell and bone responses to Ca-incorporated TNZS implants could be explained by the surface chemistry and microtopography.  相似文献   

7.
The distribution of electrons, ions and oxygen radicals in long-distance oxygen plasma and the germicidal effect (GE) of Escherichia coli on the surface of medical poly(tetrafluoroethylene) (PTFE) film were studied. The quantity of protein leakage and the production of lipid peroxide in bacterial suspension as well as the state of DNA were measured after sterilization to analyse the inactivation mechanisms. The results showed that the concentration of electrons and ions decreased rapidly with increasing the distance from the center of induction coil, which approximated to 0 at 30 cm, whereas the concentration of oxygen radicals reduced slowly, i.e. decreased 30% within 40 cm. GE value reached 3.42 in the active discharge zone (0 cm) and exceeded 3.32 within 40 cm when plasma treatment parameters were set as follows: plasma rf power at 100 W, treatment time at 60 s and oxygen flux at 40 cm3/min. Fast etching action on cell membrane by electrons, ions and attacking polyunsaturation fatty acid (PUFA) in cell membrane by oxygen radicals are primary reasons of oxygen plasma sterilization in the active discharge and the afterglow zone, respectively. The GE of UV radiation in long-distance oxygen plasma is feebleness.  相似文献   

8.
Size-adjustable silver nanoparticles were selectively in situ produced and immobilized on glass surface by simply UV exposing poly(vinylpyrrolidone) (PVP) film containing silver nitrate and 4,4′-diazostilbene-2,2′-disulfonic acid disodium salt (DAS) with the presence of a photomask, during which the crosslink between PVP and DAS completed and the silver nitrate was reduced to silver nanoparticles under the assistance of UV. Because the reduction speed of silver nitrate is much slower than the crosslink reaction of PVP, and a mount of unreduced silver nitrate still existed in the formed PVP micro-scale patterns after removing unexposed PVP by water, we can easily adjust the size of silver nanoparticles through further controlling the reduction of unreduced silver nitrate in the formed PVP micro-scale patterns. Optical microscope, UV–vis-spectroscopy, AFM and SEM-EDX were used to characterize the morphology and distribution of those silver nanoparticles immobilized on glass surface. The results indicate that it is an effective way to immobilize silver nanoparticles with high selectivity.  相似文献   

9.
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.  相似文献   

10.
We study the statistical properties of thermal radiation in a Kerr nonlinear blackbody in which bare photons with opposite wave vectors and helities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. This paper investigates the statistical properties of the photon blackbody field by using the second-order correlation function, the phase space distribution function, the photon number distribution and the nonclassical depth. The numerical computation and a discussion of the results are present.  相似文献   

11.
X.A. Li  P. Xu 《Applied Surface Science》2009,255(12):6125-6131
The composites of Co-B coatings on hollow microspheres (Co-B/HMSs) have been successfully synthesized through electroless plating in this paper. The time-dependent microstructure evolution and magnetic properties of the composites were carefully investigated by scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). It was found that small Co-B clusters appeared on the surface of hollow microspheres at catalytic nuclei during the initial stage. Further growth, they converged to form continuous coatings, which were actually stacking of Co-B nuclei. Interestingly, there was an increment of B content in the coating as time wore on, this phenomenon could be interpreted by electrochemical mechanism. Besides, the composites showed magnetic properties, which might be potentially important for the novel materials as magnetic carriers.  相似文献   

12.
To further improve surface characteristics of bio-derived compact bone scaffolds (BDCBS), 20% surface demineralization in a controlled manner was applied to the scaffolds. The surface configuration properties and roughness of the partially demineralized BDCBS and non-demineralized BDCBS (n = 12 in each group) were investigated with SEM and atomic force microscopy (AFM) in this study. The result demonstrated that the surface configuration of partially demineralized BDCBS exhibited specific porous micro-structure when compared to the compact structure of non-demineralized BDCBS. Furthermore, the result showed that the surface roughness of the partially demineralized BDCBS was significantly higher than that of BDCBS (P < 0.01). These results revealed that the partial demineralization could improve the surface configuration characteristics of BDCBS.  相似文献   

13.
Polyvinyl alcohol (PVA) films filled with different filling levels (FLs) of XFeCL3(15−X)MnCl2 were studied. The DSC thermograms exhibited an increase in the melting temperature with filling, indicating better thermal stability of the filled polymer of interesting industrial applications. The amorphous feature of the filled polymer was depicted using XRD scans. Vibrational studies displayed significant structural deformations. The FL dependence of certain IR absorption peaks was discussed. The dc electrical conduction mechanism was interpreted on the basis of the modified interpolaron hopping model. The present results of the dc magnetic susceptibility (χ) suggested the temperature dependence of Curie–Weiss behavior characterized by localized magnetic moments. The effective paramagnetic moment (μeff) was estimated; its dependence on the FL exhibited a non-linear character. The electron spin resonance (ESR) study revealed unresolved broad distorted signals characterized by the hyperfine structure. The ESR parameters were evaluated. A correlation between the above-mentioned studies was discussed to relate the structural, electrical and magnetic properties of the filled PVA polymer.  相似文献   

14.
Transparent GdTaO4:Eu3+ thick films were prepared from the inorganic salt and 2-methoxyethanol solution containing polyvinylpyrrolidone (PVP) via sol-gel technique. The critical thickness of the film, i.e. the maximum thickness achievable without crack formation via non-repetitive deposition, was 0.8 μm. The effect of PVP on the morphology, crystallization behavior and optical property of the GdTaO4:Eu3+ thick film was investigated. The results indicated that PVP could play an important role in the formation of transparent GdTaO4:Eu3+ thick films, suppressing the stress evolution, adjusting the sol viscosity, ameliorating the crystallinity, and strengthening the covalency of Eu-O bonds. The GdTaO4:Eu3+ thick films prepared with PVP exhibited a superior photoluminescence and X-ray exited luminescence, which implies that it will have promising applications in high-spatial-resolution X-ray imaging and flat panel display devices.  相似文献   

15.
The structure and electronic properties of epitaxial grown CeO2(1 1 1) thin films before and after Ar+ bombardment have been comprehensively studied with synchrotron radiation photoemission spectroscopy (SRPES). Ar+ bombardment of the surface causes a new emission appearing at 1.6 eV above the Fermi edge which is related to the localized Ce 4f1 orbital in the reduced oxidation state Ce3+. Under the condition of the energy of Ar ions being 1 keV and a constant current density of 0.5 μA/cm2, the intensity of the reduced state Ce3+ increases with increasing time of sputtering and reaches a constant value after 15 min sputtering, which corresponds to the surface being exposed to 2.8 × 1015 ions/cm2. The reduction of CeO2 is attributed to a preferential sputtering of oxygen from the surface. As a result, Ar+ bombardment leads to a gradual buildup of an, approximately 0.69 nm thick, sputtering altered layer. Our studies have demonstrated that Ar+ bombardment is an effective method for reducing CeO2 to CeO2−x and the degree of the reduction is related to the energy and amount of Ar ions been exposed to the CeO2 surface.  相似文献   

16.
The effectiveness of improving the wettability of HDPE powders within less than 0.1 s by plasma surface modification in a Plasma Downer Reactor is investigated. A correlation is revealed between the XPS results (O/C-ratio) and the wettability (contact angle, polar surface tension by capillary rise method). The O2-content in the plasma feed gas has been adjusted for best wettability properties. XPS results indicate the formation of CO and COOH functional groups on the powder surface. The O/C-ratio increased from 0.0 (no oxygen on the non-treated powder) up to 0.15 for the plasma treated HDPE powder surface. With pure O2-plasma treatment, a water contact angle reduction from >90° (no water penetration into the untreated PE powder) down to 65° was achieved. The total surface free energy increased from 31.2 to 45 mN/m. Ageing of treated powders occurs and proceeds mostly within the first 7 days of storage. Contact angle measurements and O1s/O2s intensity ratio data support that ageing is mainly a diffusion-controlled process. Nevertheless, XPS results show the presence of oxygen functional groups even after 40 days, which explains why the powder is still dispersible in water without any addition of surfactants.  相似文献   

17.
Solid polymer blend electrolyte films based on PVP/PVA complexed with KBr were prepared by the solution cast technique. Various experimental techniques such as electrical conductivity and transport number measurement were used to characterize the polymer electrolyte films. Electrochemical cells with the polymer electrolytes (PVP + PVA + KBr) were fabricated in the configuration K / (PVP + PVA + KBr) / (I2 + C + electrode). The discharge characteristics of the cells were studied under a constant load of 100 KΩ. The open-circuit voltage, short-circuit current, and discharge time for the plateau region are measured. Several other cell parameters were evaluated and are reported.  相似文献   

18.
This paper reports the surface modification of a biocompatible poly ?-caprolactone (PCL) film treated by atmospheric cold plasma (ACP) with reactive gases. The change in wettability and surface morphology of the PCL film after the plasma treatment with the reactive gases (Ar, H2, N2 and O2) were determined using contact angle and surface roughness measurements. The chemical bonding states and molecular vibration modes of the activated organic groups on the polymer surface were examined by X-ray photoelectron spectroscopy and Fourier-transformation infrared techniques. The surface of the ACP-treated PCL films was also examined for their in vitro cell attachment and proliferation using human prostate epithelial cells (HPECs). The increase in the hydrophobicity of the Ar + H2 plasma-treated PCL film resulted in a lower cell loading in the initial step of cell culture as well as a decrease in the level of cell attachment and proliferation compared with the pristine film. However, the hydrophilic properties of the Ar + N2, Ar and Ar + O2 plasma-treated PCL film improved the adhesion properties. Therefore, the Ar + N2, Ar and Ar + O2 plasma-treated PCL films showed a better cell distribution and growth than that of the pristine PCL film. The ACP-treated PCL film is potentially useful as a suitable scaffold in biophysics and bio-medical engineering applications.  相似文献   

19.
Nanostructured porous Si-based films produced by pulsed laser ablation (PLA) from a silicon target in residual helium gas can exhibit both size-dependent (1.6-3.2 eV) and fixed photoluminescent (PL) bands (1.6 and 2.2 eV) with their relative contributions depending on the film porosity. We study the influence of prolonged oxidation in ambient air on properties of the fixed PL bands, associated with oxidation phenomena, and their correlation with structural properties of the films. In addition, we propose a model describing the appearance of surface radiation states for oxidized films of various porosities. Our experiments and numerical simulations led to a conclusion that the 1.6 eV PL is due to a mechanism involving a recombination through the interfacial layer between Si core and an upper oxide of nanocrystals. This mechanism gives the optimal porosity of 73% for the most efficient production of 1.6 eV PL centers that is in excellent agreement with our experimental results.  相似文献   

20.
The polyacrylonitrile (PAN) fabric coated with ZnO-Ag composite was achieved by hydrothermal synthesis techniques and photochemical method. The PAN fabrics coated with ZnO-Ag composite were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-vis spectrophotometer and fabric induced static tester, respectively. The SEM images revealed the formation of the coating aggregates on the fiber surface. The FT-IR spectra and XRD patterns revealed the chemical structures of the coatings on the PAN fabrics. The results of UV-vis test showed that there was an obvious increase in ultraviolet resistant properties after coating. The antistatic properties results revealed the improvement in the antistatic performance of coated fabrics, attributed to the superior electrical and optical properties of ZnO and Ag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号