首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of uranyl ions (UO) with interpenetrating polymer networks (IPNs) based on amidoximated poly(acrylonitrile)/poly(N‐vinyl 2‐pyrrolidone) was examined. The adsorption capacity of IPN hydrogels as well as the adsorption kinetics and the effect of temperature on UO ion adsorption were investigated. Thermodynamic quantities and kinetic parameters were calculated with adsorption isotherm data. The initial adsorption‐rate values for each temperature were calculated, and the corresponding rate constants decreased with increasing temperature. The adsorption enthalpy, entropy, and free energy of the UO ion with amidoximated IPN hydrogels were calculated from basic thermodynamic relations. It was assessed that adsorption occurred by strong electrostatic interactions with an adsorption enthalpy of ?31.5 kJ/mol. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 986–993, 2004  相似文献   

2.
Macroporous crosslinked poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) (PGME) was synthesized by suspension copolymerization and modified by ring‐opening reaction of the pendant epoxy groups with ethylene diamine (EDA). Inverse gas chromatography (IGC) at infinite dilution was applied to determine the thermodynamic interactions of PGME and modified copolymer, PGME‐en. The specific surface areas of the initial and modified copolymer samples were determined by the BET method, from low‐temperature nitrogen adsorption isotherms. The specific retention volumes, V, of 10 organic compounds of different chemical nature and polarity (nonpolar, donor, or acceptor) were determined in the temperature range 333–413 K. The weight fraction activity coefficients of test sorbates, , and Flory–Huggins interaction parameters, , were calculated and discussed in terms of interactions of sorbates with PGME and PGME‐en. Also, the partial molar free energy, , partial molar heat of mixing, , sorption molar free energy, ΔG, sorption enthalpy ΔH, and sorption entropy, ΔS, were calculated. Glass transitions in PGME and PGME‐en, determined from IGC data, were observed in the temperature range 373–393 K and 363–373 K, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2524–2533, 2005  相似文献   

3.
Low‐molecular‐weight polyacrylic acid with amine chain end used as a macromolecular intercalating agent was synthesized by radical polymerization using 2‐aminoethanethiol hydrochloride as chain transfer agent. Three polyacrylates (sodium polyacrylate‐t‐NH, calcium polyacrylate‐t‐NH, and zinc polyacrylate‐t‐NH) were prepared by neutralization from this polyacrylic acid using sodium hydroxide, zinc oxide, and calcium hydroxide as alkalies. The intercalation of ammonium‐terminated polyacrylic acid and polyacrylate was investigated by viscosity measurement, XRD, and TEM. Using this ammonium‐terminated polyacrylic acid as the intercalating agent, exfoliated polyacrylic acid/clay and polyacrylate/clay composites with a clay loading of ~30 and 20 wt %, respectively, were prepared through the evaporation of solvent from their clay suspensions. The thermal degradation of polyacrylic acid/clay and polyacrylate/clay composites was also studied by TGA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2335–2340, 2008  相似文献   

4.
The formation of complexes between linear poly(acrylic acid) (PAA) and uranyl ions in aqueous solutions was studied with conductometry, potentiometry, thermal analysis, Fourier transform infrared, and luminescence spectroscopy methods. The stoichiometry of the PAA/UO complex on repeating units of a PAA basis was determined to be 2:1. IR spectroscopy studies made on solid complexes showed that the carbonyl stretching absorption band of PAA was shifted to a higher wave number, and a new band at 1749 cm?1 in the polycomplex spectrum was observed, confirming the existence of specific interactions between the carboxylate groups of PAA and metal ions. Luminescence spectroscopy studies showed an increase in the intensity of the uranyl‐ion emission spectra and new band formation at 483 nm, further confirming the interaction of UO ions with PAA in aqueous solutions. The thermal behavior of PAA/UO complexes further proved strong interactions in the complex structure. The thermal degradation of the polycomplexes included the main stages of destruction of both PAA and uranyl nitrate. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1610–1618, 2004  相似文献   

5.
(S)‐1‐Cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐ 4‐carboxylate [ (S)‐11 ] and (R)‐1‐cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐4‐carboxylate [( R)‐11 ] enantiomers, both greater than 99% enantiomeric excess, and their corresponding homopolymers, poly[ (S)‐11 ] and poly[ (R)‐11 ], with well‐defined molecular weights and narrow molecular weight distributions were synthesized and characterized. The mesomorphic behaviors of (S)‐11 and poly[ (S)‐11 ] are identical to those of (R)‐11 and poly[ (R)‐11 ], respectively. Both (S)‐11 and (R)‐11 exhibit enantiotropic SA, S, and SX (unidentified smectic) phases. The corresponding homopolymers exhibit SA and S phases. The homopolymers with a degree of polymerization (DP) less than 6 also show a crystalline phase, whereas those with a DP greater than 10 exhibit a second SX phase. Phase diagrams were investigated for four different pairs of enantiomers, (S)‐11 /( R)‐11 , (S)‐11 /poly[ (R)‐11 ], and poly[ (S)‐11 ]/poly[ (R)‐11 ], with similar and dissimilar molecular weights. In all cases, the structural units derived from the enantiomeric components are miscible and, therefore, isomorphic in the SA and S phases over the entire range of enantiomeric composition. Chiral molecular recognition was observed in the SA and SX phases of the monomers but not in the SA phase of the polymers. In addition, a very unusual chiral molecular recognition effect was detected in the S phase of the monomers below their crystallization temperature and in the S phase of the polymers below their glass‐transition temperature. In the S phase of the monomers above the melting temperature and of the polymers above the glass‐transition temperature, nonideal solution behavior was observed. However, in the SA phase the monomer–polymer and polymer–polymer mixtures behave as an ideal solution. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3631–3655, 2000  相似文献   

6.
An algorithm for evaluation of two‐center, three‐electron integrals with the correlation factors of the type rr and rrr as well as four‐electron integrals with the correlation factors rrr and rrr in the Slater basis is presented. This problem has been solved here in elliptical coordinates, using the generalized and modified form of the Neumann expansion of the interelectronic distance function r for k ≥ ?1. Some numerical results are also included. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

7.
Copolymerizations of methyl 2‐acetamidoacrylate (MAA) with methyl methacrylate (MMA) were carried out at 60 °C in chloroform. Copolymers containing MAA units in the range of 83–90 mol % exhibited a lower critical solution temperature (LCST), although homopolymers of MAA and MMA did not. The LCST of polymer solutions decreased with (1) an increase in the concentration of the copolymer, (2) a decrease in the MAA content in the copolymer, and (3) an increase in the concentration of salts added. The effectiveness of anionic species for reducing the LCST is NO < Cl? < SO < SO. Divalent anion is more effective for lowering the LCST than monovalent anion. However, there is no difference between cationic species in the salting‐out effect. Sodium carbonate and sodium phosphate had a salting‐in effect. Salting‐out coefficients were evaluated from the relationship between the logarithm of solubility of the copolymers and the salt concentration. Salting‐out coefficients of the copolymer depended not on the composition of the copolymers but on the salt added. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1945–1951, 2002  相似文献   

8.
A new kind of polymeric chemosensor containing chiral naphthaldimine moiety in the side chain was synthesized by the reversible addition‐fragmentation chain transfer polymerization of N‐{[2‐(4‐vinylbenzyloxy)‐1‐naphthyl]‐methylene}‐(S)‐2‐phenylglycinol (VNP). The resulting polymers (PVNP) showed high selectivity for hydrogen sulfate relative to other anions including F?, Cl?, Br?, H2PO, CH3CO, and NO in tetrahydrofuran (THF) solution as judged from UV?vis, fluorescence, and circular dichroism spectrophotometric titrations. Compared with its monomer, the polymer has proven to be more attractive for detection of HSO in terms of sensitivity and reproducibility. Upon addition of the anion it gives remarkable spectral responses concomitant with detectable color change from colorless to pale yellow. Furthermore, the HSO‐induced CD or fluorescence signal can be totally reversed with addition of base and eventually recovered the initial state, leading to a reproducible molecular switch with two distinguished “on” and “off” states. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
An ethylene–propylene copolymer (EPM) was functionalized with an iso cyanate‐bearing unsaturated monomer, allyl(3‐isocyanate‐4‐tolyl) carbamate (TAI), with dicumyl peroxide as an initiator in a xylene solution. Fourier transform infrared (FTIR) was used to confirm the formation of EPM‐g‐TAI. The peak at 2273 cm?1, characteristic of ? NCO groups in EPM‐g‐TAI, revealed evidence of grafting. The grafting degree was determined with both chemical titration and FTIR. The grafting degree could be adjusted, and the maximum was over 6 wt % without any gelation. The molar mass distribution of EPM‐g‐TAI was narrower than that of EPM. The rheological behavior of both EPM‐g‐TAI and EPM was investigated with a rotational rheometer. The apparent viscosity of EPM‐g‐TAI was higher than that of EPM and increased with an increasing grafting degree of TAI. Surface analysis by contact‐angle measurements showed that contact angles of EPM‐g‐TAI samples to a given polar liquid decreased with an increasing grafting degree of TAI. We also obtained the dispersion component of the surface free energy (γ), the polar component of the surface free energy (γ), and the total surface free energy (γS = γ + γ) of the grafted EPM. These parameters increased with the enhancement of the grafting degree, which gave us a quantitative estimation of the polar contribution of the grafted TAI to the total surface free energy of EPM‐g‐TAI. The adhesive property of EPM‐g‐TAI with aluminum foil was studied. The peeling strength between EPM‐g‐TAI plate and aluminum foil increased dramatically with an increasing content of grafted TAI in EPM‐g‐TAI. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 387–402, 2003  相似文献   

10.
Non‐transition metal‐catalyzed living radical polymerization (LRP) of vinyl chloride (VC) in water at 25–35 °C is reported. This polymerization is initiated with iodoform and catalyzed by Na2S2O4. In water, S2O dissociates into SO that mediates the initiation and reactivation steps via a single electron transfer (SET) mechanism. The exchange between dormant and active propagating species also includes the degenerative chain transfer to dormant species (DT). In addition, the SO2 released from SO during the SET process can add reversibly to poly(vinyl chloride) (PVC) radicals and provide additional transient dormant ~SO radicals. This novel LRP proceeds mostly by a combination of competitive SET and DT mechanisms and, therefore, it is called SET‐DTLRP. Telechelic PVC with a number‐average molecular weight (Mn) = 2,000–55,000, containing two active ~CH2? CHClI chain ends and a higher syndiotacticity than the commercial PVC were obtained by SET‐DTLRP. This PVC is free of structural defects and exhibits a higher thermal stability than commercial PVC. SET‐DTLRP of VC is carried out under reaction conditions related to those used for its commercial free‐radical polymerization. Consequently, SET‐DTLRP is of technological interest both as an alternative commercial method for the production of PVC with superior properties as well as for the synthesis of new PVC‐based architectures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6267–6282, 2004  相似文献   

11.
Diazonium group–substituted polystyrene (PS–N) micrometer‐sized spheres with narrow distribution were prepared from highly crosslinked polystyrene particles. Then a composite sphere was prepared with the micro‐PS–N sphere as core and submicrometer‐sized poly(styrene‐methyl methacrylate‐acrylic acid) [P(S‐MMA‐AA)] colloids or nanometer‐sized SiO2 particles as shell via columbic interaction. The ionic linkages between the core and shell convert to covalent bonds in the thermal treatment process. As a result, the composite sphere becomes very stable toward polar solvents as well as toward ultrasonic treatment. A hollow SiO2 micrometer‐sized sphere then was achieved by removing the core under sintering conditions (700 °C). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4284–4288, 2004  相似文献   

12.
Poly(2,5‐dimethoxyaniline) (PDMA)–Ag composites were successfully obtained through the oxidative polymerization of 2,5‐dimethoxyaniline in poly(styrene sulfonic acid) with CH3SO3Ag and AgNO3 as oxidants. In situ ultraviolet–visible spectroscopy results showed that the growth rate of PDMA was strongly affected by CH3SO and NO. The coupling reaction of PDMA and NO was proposed to explain the lower growth rate of PDMA with AgNO3 as the oxidant in comparison with CH3SO3Ag. X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to validate the proposed coupling reaction through the monitoring of the side products and oxidized state of PDMA. The results showed that there were more side products and lower oxidized states for the composite structure in the presence of NO than in the presence of CH3SO, and this agreed with the proposal. Transmission electron microscopy showed that the Ag nanoparticles had almost the same size, regardless of the anions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6624–6632, 2006  相似文献   

13.
Novel poly(3,4‐ethylenedioxythiophene) (PEDOT) polymers bearing imidazolium‐ionic liquid moieties were synthesized by electrochemical polymerizations. For this purpose, new functional monomers were synthesized having an 3,4‐ethylenedioxythiophene (EDOT) unit and an imidazolium‐ionic liquid with different anions such as tetrafluoroborate (BF), bis(trifluoromethane)sulfonimide ((CF3SO2)2N?), and hexafluorophosphate (PF). Next, polymer films were obtained by electrochemical synthesis in dicholoromethane solutions. Obtained polymers were characterized, revealing the characteristics of PEDOT in terms of electrochemical and spectroelectrochemical properties, FTIR, 1H NMR, and AFM microscopy. Interestingly, the hydrophobic character of electropolymerized films could be modified depending on the anion type. The hydrophobicity followed the trend PF > (CF3SO2)2N? > BF > pure PEDOT as determined by water contact angle measurements. Furthermore, the polymers could be dissolved in a range of polar organic solvents such as dimethylformamide, propylene carbonate, and dimethyl sulfoxide making these polymers interesting candidates for wet processing methods. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3010–3021, 2009  相似文献   

14.
Compatibility of crystalline/crystalline polypropylene (PP)/poly(butene‐1) (PB‐1) blends was investigated via the method of equilibrium melting temperature depression followed by determining the polymer–polymer interaction parameter (χ) using the Nishi–Wang equation. The composition variation of the equilibrium melting temperatures of blends (T) was determined with the Hoffman–Weeks plot. The T and its variation with the blend composition depended on the crystallization temperature range. The morphological effect of the blend composition was not a contribution factor for the T depressions of PP and PB‐1 in the blends. The interplay of the dilution effect and molecular fractionation effect of the amorphous component on crystallization of the crystalline component in the blends governed the relation of T with the blend composition. The calculated χ values were negative depending on the blend composition. The negative χ values suggested that PP and PB‐1 in the amorphous region were compatible. The composition variation of the χ values was attributed to the molecular fractionation effect during crystallization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 638–648, 2002; DOI 10.1002/polb.10125  相似文献   

15.
A water‐soluble sample (TM4b), extracted from sclerotia of Pleurotus tuberregium, was analyzed using elemental analysis, one‐ and two‐dimensional 1H and 13C NMR. The results indicated that TM4b was protein–polysaccharide complex, and the polysaccharide moiety was hyperbranched β‐D ‐glucan with residuals branched at C3, C2, C4, and C6 positions. A preparative size‐exclusion chromatography (SEC) column combined with nonsolvent addition method was used to fractionate TM4b, and nine fractions were obtained. Solution properties of TM4b in 0.15 M aqueous NaCl were studied using static laser light scattering and viscometry at 25 °C. The dependences of intrinsic viscosity ([η]) and radius of gyration (〈S2〉) on weight–average molecular weight (Mw) for TM4b in the Mw range from 1.89 × 104 to 2.58 × 106 were found to be [η] = 0.21M and 〈S2〉 = 3.63M. It indicated that TM4b existed as compact sphere conformation in the aqueous solution. Atomic force microscopy image further confirmed that the TM4b molecules exhibited globular shape in the solution. This work gave valuable information on fractionation and chain conformation characterization of the globular protein–polysaccharide complex. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2546–2554, 2007  相似文献   

16.
The Raman shift and crystallite modulus were measured under the application of tensile force for a giant single crystal and a series of uniaxially oriented semicrystalline samples of poly(trans‐1,4‐diethyl muconate) (polyEMU). The apparent Raman shift factor αapp or a vibrational frequency shift per 1 GPa tensile stress was higher for the semicrystalline samples with lower crystallinity or lower bulk modulus. The apparent crystallite modulus E or Young's modulus along the chain axis in the crystalline region was not constant but varied remarkably between the giant single crystal and semicrystalline samples. A systematic change in αapp and E among the polyEMU samples with different preparation history could be interpreted quantitatively on the basis of a mechanical series parallel model consisting of crystalline and amorphous phases. The origin of different E and αapp was speculated to be a stress concentration on the taut‐tie chain contained as a parallel crystalline component in the mechanical model. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 444–453, 2003  相似文献   

17.
Reactions of dry THF/MeCN solutions of Ca[Re6SCl(Cla)6] with silylated derivatives E(SiMe3)2 (E = PhAs, PSiMe3, HN, O, S) and addition of trialkylphosphine PPr3 afford in high yields and at room temperature either the neutral clusters [Re6SX(PPr3)] ( 1 : X = As, 2 : X = P) or the ionic compounds [Re6SX(PPr3)]2+ · [Re6S6Cl8]2– ( 3 : X = NH, 4 : X = O, 5 : X = S). The compounds 1 – 5 were characterised by X‐ray crystal structure analysis. A di‐substitution reaction occurs on the {Re6SCl}4+ cluster core, where the two inner μ3‐chloro ligands Cli are substituted by X (X = As, P, NH, O, S) and all six terminal chloro ligands Cla are exchanged by terminal PPr3‐ligands.  相似文献   

18.
Thin films of AgSbS2 are important for phase‐change memory applications. This solid is deposited by various techniques, such as metal organic chemical vapour deposition or laser ablation deposition, and the structure of AgSbS2(s), as either amorphous or crystalline, is already well characterized. The pulsed laser ablation deposition (PLD) of solid AgSbS2 is also used as a manufacturing process. However, the processes in plasma have not been well studied. We have studied the laser ablation of synthesized AgSbS2(s) using a nitrogen laser of 337 nm and the clusters formed in the laser plume were identified. The ablation leads to the formation of various single charged ternary AgpSbqSr clusters. Negatively charged AgSbS, AgSb2S, AgSb2S, AgSb2S and positively charged ternary AgSbS+, AgSb2S+, AgSb2S, AgSb2S clusters were identified. The formation of several singly charged Ag+, Ag, Ag, Sb, Sb, S ions and binary AgpSr clusters such as AgSb, Ag3S?, SbS (r = 1–5), Sb2S?, Sb2S, Sb3S (r = 1–4) and AgS, SbS+, SbS, Sb2S+, Sb2S, Sb3S (r = 1–4), AgSb was also observed. The stoichiometry of the clusters was determined via isotopic envelope analysis and computer modeling. The relation of the composition of the clusters to the crystal structure of AgSbS2 is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Synthesis, Vibrational Spectra, and Crystal Structure of ( n ‐Bu4N)2[(W6Cl )F ] · 2 CH2Cl2 and 19F NMR Spectroscopic Evidence of the Mixed Cluster Anions [(W6Cl )F Cl ]2–, n = 1–6 The reaction of (n‐Bu4N)2[(W6Cl)Cl] with CF3COOH in dichloromethane gives intermediately a mixture of the cluster anions [(W6Cl)(CF3COO)Cl]2–, n = 1–6. By treatment with NH4F the outer sphere coordinated trifluoracetato ligands are easily substituted and the components of the series [(W6Cl)FCl], n = 1–6 are formed and characterized by their distinct 19F NMR chemical shifts. An X‐ray structure determination has been performed on a single crystal of (n‐Bu4N)2[(W6Cl)F] · 2 CH2Cl2 (orthorhombic, space group Pbca, a = 15.628(4), b = 17.656(3), c = 20.687(4) Å, Z = 4). The low temperatur IR (60 K) and Raman (20 K) spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(WW) = 1.89, fd(WF) = 2.43 and fd(WCl) = 0.93 mdyn/Å.  相似文献   

20.
Summary: A highly selective protein assay was created which combines the fluorescent ratiometric technique based on FRET with the light‐harvesting properties of conjugated polymers. The cationic poly[(9,9‐bis(6′‐N,N,N‐trimethylammonium)‐hexyl)‐fluorene phenylene] bromide (PFP‐NMe) and the negatively charged biotinylated fluorescein probe (Fl‐B) were used to detect the target protein streptavidin optically. The strong electrostatic interactions between PFP‐NMe and fluorescein result in efficient FRET from PFP‐NMe to fluorescein. In the presence of streptavidin, however, the biotin moiety of Fl‐B specifically associates with streptavidin and the fluorescein molecule is buried deeply in the adjacent vacant binding sites. This separates the fluorescein spatially from the PFP‐NMe moiety, resulting in inefficient FRET from PFP‐NMe to fluorescein. Although a nonspecific protein, such as BSA, shows nonspecific interactions with PFP‐NMe, it does not affect the fluorescent ratio value of PFP‐NMe to fluorescein. Hence, the charged neutral complex of two oppositely charged conjugated polymers can eliminate the nonspecific interactions, and thus optimize their application in protein assays.

A schematic representation of the protein assay operation.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号