首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The reaction of hexakis(2,4,6‐triisopropylphenyl)tetrasilabuta‐1,3‐diene R2Si=SiR–SiR=SiR2 ( 1 ) with atmospheric oxygen furnishes the oxidation product R2Si(O)2SiROSiR(O)2SiR2 ( 5 ) by oxygen insertion into all Si–Si bonds. However, treatment of 1 with meta‐chloroperoxobenzoic acid provides R2Si(O)2SiR–SiR(O)2SiR2 ( 7 ) with retention of the Si–Si single bond. Reaction of 1 with traces of water gives the oxatetrasilacyclopentane derivative 10 analogous to THF. With excess water a tetrasilane‐1,4‐diol is formed. The structures of 5 , 7 , and 10 were determined by X‐ray crystallography.  相似文献   

2.
The reactions of hexakis(2,4,6‐triisopropylphenyl)tetrasilabuta‐1,3‐diene R2Si=SiR—SiR=SiR2 ( 1 ) with HCl and HBr, slowly generated from HSiCl3 or LiBr and CF3COOH, respectively, furnish the unsymmetrically substituted disilenes R2XSi—SiR=SiR—SiHR2, X = Cl ( 2 ), Br ( 3 ), by formal 1,4‐addition of the hydrogen halides to 1 . However, passing gaseous hydrogen halides over the solution of 1 yields the 1,4‐dihalotetrasilanes by two‐fold 1,2‐additions to the double bonds of 1 . The structures of 2 and 3 which crystallize isotypically with one another have been determined by X‐ray crystallography.  相似文献   

3.
1,2‐Diaza‐3‐silacyclopent‐5‐ene – Synthesis and Reactions The dilithium salt of bis(tert‐butyl‐trimethylsilylmethylen)ketazine ( 1 ) forms an imine‐enamine salt. 1 reacts with halosilanes in a molar ratio of 1:1 to give 1,2‐diaza‐3‐silacyclopent‐5‐enes. Me3SiCH=CCMe3 [N(SiR,R′)‐N=C‐C]HSiMe3 ( 2 ‐ 7 ). ( 2 : R,R′ = Cl; 3 : R = CH3, R′ = Ph; 4 : R = F, R′ = CMe3; 5 : R = F, R′ = Ph; 6 : R = F, R′ = N(SiMe3)2; 7 : R = F, R′ = N(CMe3)SiMe3). In the reaction of 1 with tetrafluorosilane the spirocyclus 8 is isolated. The five‐membered ring compounds 2 ‐ 7 and compound 9 substituted on the silicon‐fluoro‐ and (tert‐butyltrimethylsilyl) are acid at the C(4)‐atom and therefore can be lithiated. Experiments to prepare lithium salts of 4 with MeLi, n‐BuLi and PhLi gave LiF and the substitution‐products 10 ‐ 12 . 9 forms a lithium salt which reacts with ClSiMe3 to give LiCl and the SiMe3 ring system ( 13 ) substituted at the C(4)‐atom. The ring compounds 3 ‐ 7 and 10 ‐ 12 form isomers, the formation is discussed. Results of the crystal structure and analyses of 8 , 10 , 12 , and 13 are presented.  相似文献   

4.
Compounds of Silicon. 146. Unsaturated Silicon Compounds. 59. On the Way to a Disilyne –Si≡Si–: Formation of RHSi=SiHR and Indication of the Intermediate Formation of RSi≡SiR (R = SiH(Si t Bu3)2) Reaction of R*2HSi–SiHBr–SiHBr–SiHR*2 with an equimolar amount of NaR* × 2 THF in THF at –78 °C (R* = supersilyl = SitBu3) or reaction of R*2ClSi–SiHBr–SiHBr–SiClR*2 with a two‐molar amount of NaR* × 2 THF in C6D6 at room temperature leads in the first case to the yellow disilene (R*2HSi)HSi=SiH(SiHR*2) ( 1 ) and to the red cyclotetrasilene [–R*HSi–R*Si=SiR*–SiHR*–] ( 3 ), respectively, in the latter case to the colorless bicyclotetrasilane R*4H2Si4 ( 4 ). The disilene 1 (for > Si= in 29Si‐NMR: d of d at 141.32 ppm with 1JSiH = 149.9 Hz, 2JSiH = 0.9 Hz) slowly isomerizes at room temperature (τ1/2 ca. 3 h) under formation of the colorless trisilacyclopentane [–CH2–SiH(SiH2SiHR*2)–SiHR*–SitBu2–CMe2–] ( 2 ) and adds methanole under formation of the colorless compound R*2HSi–SiH2–SiH(OMe)–SiHR*2. As initial stage of 3 the disilyne R*2HSi–Si≡Si–SiHR*2 is in consideration, which by way of R*HSi=SiR*–SiR*=SiHR* may transform into 3 . The characterization of 2 and 3 results among others from X‐ray structure analyses, whereby for 3 an unexpectable long double bond (2.36 Å) has been found. The identification of 4 results from comparison with an authentic sample (formed from R*HBrSi–SiBr2R* and NaR* × 2 THF).  相似文献   

5.
Organic modified siloxanes of the type RSi(OMe2)2(CH2)3C6D4(CH2)3(OMe2)2SiR [R = Me ( 4 ), R = OMe ( 5 )] were sol‐gel processed employing solvents of different polarity (MeOH and THF) to yield the corresponding inorganic‐organic hybrid polymers X4a — X5b with different physical properties. These polymers were investigated by multinuclear (2H, 13C, and 29Si) solid state and 1H suspension state NMR spectroscopy, including dynamic NMR techniques, in order to correlate the mobilities of these xerogels with physical properties, especially with the cross‐linkage.  相似文献   

6.
The equilibrium between disilenes (R2Si=SiR2) and their silylsilylene (R3Si?SiR) isomers has previously been inferred but not directly observed, except in the case of the parent system H2Si=SiH2. Here, we report a new method to prepare base‐coordinated disilenes with hydride substituents. By varying the bulk of the coordinating base and other silicon substituents, we have been able to control the rearrangement of disilene adducts to their silylsilylene tautomers. Remarkably, 1,2 migration of a trimethylsilyl group is preferred over hydrogen migration. A DFT study of the reaction mechanism provides a rationale for the observed reactivity and detailed information on the bonding situation in base‐stabilized disilenes.  相似文献   

7.
2,2‐Difluor‐1,3‐diaza‐2‐sila‐cyclopentene – Synthesis and Reactions N,N′‐Di‐tert‐butyl‐1,4‐diaza‐1,3‐butadiene reacts with elemental lithium under reduction to give a dilithium salt, which forms with fluorosilanes the diazasilacyclopentenes 1 – 4 ; (HCNCMe3)2SiFR, R = F ( 1 ), Me ( 2 ), Me3C ( 3 ), N(CMe3)SiMe3 ( 4 ). As by‐product in the synthesis of 1 , the tert‐butyl‐amino‐methylene‐tert‐butyliminomethine substituted compound 5 was isolated, R = N(CMe3)‐CH2‐CH = NCMe3. 5 is formed in the reaction of 1 with the monolithium salt of the 1,4‐diaza‐1,3‐butadiene in an enamine‐imine‐tautomerism. 1 reacts with lithium amides to give (HCNCMe3)2SiFNHR, 6 – 12 , R = H ( 6 ), Me ( 7 ), Me2CH ( 8 ), Me3C ( 9 ), H5C6 ( 10 ), 2,6‐Me2C6H3 ( 11 ), 2,6‐(Me2CH)2C6H3 ( 12 ). The reaction of 12 with LiNH‐2.6‐(Me2CH)2C6H3 leads to the formation of (HCNCMe3)2Si(NHR)2, ( 13 ). In the presence of n‐BuLi, 12 forms a lithium salt which looses LiF in boiling toluene. Lithiated 12 adds this LiF and generates a spirocyclic tetramer with a central eight‐membered LiF‐ring ( 14 ), [(HCNCMe3)2Si(FLiFLiNR)]4, R = 2,6‐(Me2CH)2C6H3. ClSiMe3 reacts with lithiated 12 to yield the substitution product (HCNCMe3)2SiFN(SiMe3) R, ( 15 ). The crystal structures of 1 , 5 , 6 , 9 , 11 , 13 , 14 are reported.  相似文献   

8.
The reduction of R*–SiBr2–SiBr2–R* ( 2 ) with NaR* (R* = supersilyl = SitBu3) in presence of C2H4 provides a white crystalline solid (η2‐C2H4)R*Si–SiR*(Br)(CH2–CH2–R*) ( 3 ) characterized by X‐ray diffraction analysis. Compound 3 is accompanied with an impurity of R*(Br)2Si–Si(Br)(R*)(CH2–CH2–R*) ( 4 ). The formation of 3 and 4 runs complicated because of several reactive partners. However, reduction of 2 with sodium naphthalenide in presence of ethene runs straightforward with formation of a mixture of tetrahedrane R*4Si4 ( 1 ) and bis(silirane) R*(η2‐C2H4)Si–Si(η2‐C2H4)R* ( 5 ). The latter is formed by [1+2]‐cycloaddition reaction of intermediate disilyne R*Si≡SiR* with ethene. Compound 5 has been characterized by X‐ray structure determination. The 1H NMR spectrum of the silacyclopropane ring protons shows AA′BB′ complex spectrum comprising of 2 sets each of 12 transitions.  相似文献   

9.
Two new trans‐disubstituted cyclam ligands; 1,8‐di(6‐hydroxymethylpyridin‐2‐ylmethyl)‐1,4,8,11‐tetra‐azacyclotetradecane ( 5 ) and 1,8‐dimethyl‐4, 11‐di(6‐hydroxymethylpyridin‐2‐ylmethyl)‐1,4,8,11 ‐tetraaza‐cyclotetradecane ( 6 ); have been synthesized and characterized. The crystal structures of ligand 6 and its Ni(II) and Co(II) complexes have been determined. Crystal data are given for 6 , space group, P21/c, a = 11.095 (6) Å, b = 9.467 (5) Å, c = 13.283 (8) Å; β = 106.95 (5)°, Z = 2, R = 0.0715; for [Ni 6 ](C104)2, space group P21/c, a = 9.4848 (14) Å, b = 33.941(6) Å, c = 9.793(2) A, β = 95.264(14)°, Z = 4, R = 0.0567; for [Co 6 ](C104)2, space group, P21/c, a = 9.440 (6) Å, b = 33.848 (13) Å, c = 9.820 (3) Å, β = 95.16(3)°, Z = 4, R = 0.0718. In both complexes, the metal atoms are six‐coordinate with only one of the pendants interacting with the central metal atom and the other pendant remaining uncoordinated.  相似文献   

10.
New Polyiodides of Cesium containing Double and Triple Decker Cations, [Cs(benzo‐18‐crown‐6)2]Ix and [Cs2(benzo‐18‐crown‐6)3](Ix)2 (x = 3, 5) [Cs(b18c6)2]Ix (x = 3 (1) , 5 (3) ) and [Cs2(b18c6)3](Ix)2 (x = 3 (2) , 5 (4) ) (b18c6 = benzo‐18‐crown‐6) have been synthesized by the reaction of benzo‐18‐crown‐6 (C16H24O6), cesium iodide (CsI) and iodine (I2) in acetonitrile ( 1 ), ethanol/dichloromethane ( 2 , 4 ) and 2‐methoxyethanol ( 3 ). Their crystal structures were determined on the basis of single crystal X‐ray data {( 1 ): monoclinic, C2/c, Z = 4, a = 2048.8(5), b = 1329.5(5), c = 1588.7(5) pm, β = 110.23(1)°; ( 2 ): monoclinic, C2/c, Z = 4, a = 2296.0(1), b = 2092.7(1), c = 1373.6(1) pm, β = 100.21(1)°; ( 3 ): monoclinic, P21/n, Z = 4, a = 1586.3(1), b = 1745.5(1), c = 1608.6(1) pm, β = 92.37(1)°; ( 4 ): triclinic, , Z = 2, a = 1241.7(1), b = 1539.8(2), c = 1938.4(2) pm, α = 91.15(1), β = 100.53(1), γ = 95.26(1)°}. As expected, double decker cations centered by Cs atoms, [Cs(b18c6)2]+, are found in the structures of ( 1 ) and ( 3 ). In contrast, the triple decker cation found in ( 2 ) and ( 4 ) is less common. The triiodide anions of ( 1 ) and ( 2 ) can be regarded as normal and the chain‐type pentaiodide anions of ( 3 ) and ( 4 ) fall into the known systematic sequence of these anions. The differences in the connectivity of the crystallographically independent I5? anions in ( 4 ) are surprising with respect to the fact that, so far, independent pentaiodide anions do not show variations in their scheme of connectivity within one crystal structure.  相似文献   

11.
Crystal Structures of „Supramolecular”︁ Benzo‐18‐crown‐6 Potassium Tetrathiocyanato Metallates: A Dimeric Complex {[K(Benzo‐18‐crown‐6)]2[Hg(SCN)4]}2 and Two Isomeric Complexes [K(Benzo‐18‐crown‐6)][Cd(SCN)3] Containing Trithiocyanato Cadmate Anions with Chain Structures By reaction of potassium thiocyanatomercurate(II) complexes with benzo‐18‐crown‐6 (2,3‐benzo‐1,4,7,10,13,16‐hexaoxacyclooctadec‐2‐ene) crystals of {[K(benzo‐18‐crown‐6)]2[Hg(SCN4)]}2 ( 1 ) were obtained. 1 crystallizes monoclinic, space group P21/n (non‐standard setting of P21/c), a = 1737.35(2), b = 1377.16(2), c = 1984.12(3) pm, β = 100.637(1)°, Z = 2. With potassium tetrathiocyanatocadmate(II) two modifications of a complex [K(benzo‐18‐crown‐6)][Cd(SCN)3] ( 2 , 3 ), of different symmetry were formed. 2 crystallizes monoclinic, P21/c, a = 1158,31(3), b = 1096,55(2), c = 2028,46(2) pm, β = 99,5261(2)°, Z = 4, 3  orthorhombic, P21cn, a = 1105,95(3), b = 1413,07(4), c = 1617,10(5) pm, Z = 4. 1 has a dimeric structure, built up from a dication K2(benzo‐18‐crown‐6)2]2+ and two [K(benzo‐18‐crown‐6)]+ cations, which are bridged by two [Hg(SCN)4]2– anions. In 2 and 3 triply bridged infinite [{Cd(SCN)3}n] zigzag chains, stretching along screw axes, are to be found as anions. In 2 these chains exist in two conformations related by inversion symmetry, whereas in 3 only one form can be found. [K(benzo‐18‐crown‐6)]+ cations are linked to the anion chains via K · · · S interactions of different lengths.  相似文献   

12.
The title compound  C6N7(NHNH2)3 ( 1 ) was obtained from melem C6N7(NH2)3 or melon [C6N7(NH2)NH]n and hydrazine by an autoclave synthesis. Upon treatment with a 10 % HCl solution it is transformed into the trihydrochloride  [C6N7(NHNH3)3]Cl3 ( 2 ). Compounds 1 and 2 were analysed with 13C NMR, 15N NMR, FTIR and Raman spectroscopy. Furthermore, the single‐crystal X‐ray structure of the pentahydrate of 2 is reported (P\bar{1} , a = 674.96(3), b = 1214.17(6), c = 1272.15(6) pm, α = 66.288(2)°, β = 75.153(2)°, γ = 80.420(2)°, V = 920.30(8)·106 pm3, Z = 2, T = 90(2) K). The thermal decomposition of 1 and 2 was investigated with TG/DTA. Reaction of 1 with NaNO2/HCl yields triazido‐s‐heptazine, C6N7(N3)3 ( 3 ). Tris(tri‐n‐butylphosphinimino)‐s‐heptazine ( 4 ) was synthesised from 3 and characterised by means of 13C, 31P, 1H NMR, FTIR and MALDI‐TOF spectroscopy. Similar to s‐heptazine derivative 3 , compounds 1 and 4 are precursors for graphitic carbon nitrides, which have attracted considerable attention recently, and to various potential applications, such as flame retardants and (photo) catalysis.  相似文献   

13.
Bifunctionalized 1 H‐Phosphirene and g1‐1‐Phosphaallene Tungsten Complexes The tungsten(0) complex [{(Me3Si)2HCPC(Ph)=N}W(CO)5] 1 reacts upon heating with acetylene derivatives 2 a–d in toluene to form benzonitrile and the complexes [{(Me3Si)2HCPC(R)=COEt} · W(CO)5] 5 a–d ( 5 a : R = SiMe3; 5 b : R = SiPh3; 5 c : R = SnMe3; 5 d : R = SnPh3) and [{(Me3Si)2HCP=C=C(OEt)R} · W(CO)5] 6 a, b ( 6 a : R = SnMe3; 6 b : R = SnPh3), which have been isolated by chromatography; complexes 5 c and 6 a have been characterized as mixtures. Spectroscopic and mass spectrometric data are discussed. The crystal structure of the compound 5 a was determined by X‐ray single crystal structure analysis ( 5 a : space group P21/n, Z = 4, a = 977.6(2) pm, b = 1814.6(4) pm, c = 1628.0(4) pm, β = 93.95(2)°).  相似文献   

14.
Infinite dilution 29Si and 13C NMR chemical shifts were determined from concentration dependencies of the shifts in dilute chloroform and acetone solutions of para substituted O‐silylated phenols, 4‐R‐C6H4‐O‐SiR′2R″ (R = Me, MeO, H, F, Cl, NMe2, NH2, and CF3), where the silyl part included groups of different sizes: dimethylsilyl (R′ = Me, R″ = H), trimethylsilyl (R′ = R″ = Me), tert‐butyldimethylsilyl (R′ = Me, R″ = CMe3), and tert‐butyldiphenylsilyl (R′ = C6H5, R″ = CMe3). Dependencies of silicon and C‐1 carbon chemical shifts on Hammett substituent constants are discussed. It is shown that the substituent sensitivity of these chemical shifts is reduced by association with chloroform, the reduction being proportional to the solvent accessible surface of the oxygen atom in the Si‐O‐C link. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Sigma‐ versus Pi‐Coordination in Bis‐indenyl‐ and Bis‐2‐methallyl Imido Complexes of Hexavalent Molybdenum and Tungsten: DF‐Calculations and Crystal Structure Analysis Bis‐indenyl and bis‐2‐methallyl imido complexes [(C9H7)2M(NR)2] (M = Mo, W; R = tert‐butyl, mesityl) 1 — 4 and [(H3C‐C3H4)2M(NtBu)2] (M = Mo, W) 6 , 7 have been prepared starting from [Mo(NtBu)2Cl2] or [M(NR)2Cl2L2] (M = W, R = tBu, L = py; M = Mo, W, R = Mes, L2 = dme) and indenyl lithium or 2‐methallyl magnesium bromide, respectively. According to spectroscopic data and the crystal structure of 4 there are two different coordination modes of the indenyl ligands, [(η3‐C9H7)M(NR)21‐C9H7)], in solution as well as in the solid state. These compounds show fluxional rearrangements in solution, namely σ, π‐exchange of η1‐ and η3‐coordinated ligands. Similar behavior has been observed for the 2‐methallyl complexes 6 and 7 in solution. In agreement with experimental observations, DF calculations on models of 6 strongly suggest a (σ+π)‐coordination mode of the η3‐coordinated ligand.  相似文献   

16.
Complexes of Monovalent Dibenzo‐18‐crown‐6 Cations with Triiodide as Anions The new polyiodides [NH4(db18c6)]2(I3)2 ( 1 ), [NH4(db18c6)](db18c6)I3 ( 2 ), [Na1/2(db18c6)H2O]2I3 ( 3 ), [Rb(db18c6)]I3 ( 4 ), [Rb(db18c6)]2(I3)2 ( 5 ), [Cs(db18c6)]I3 ( 6 ), and [Cs2(db18c6)3][Cs(db18c6)3/2](I3)3 ( 7 ) were obtained from reactions of dibenzo‐18‐crown‐6 (db18c6) and iodine with NH4I, NaI, RbI, and CsI. Their crystal structures were determined by single‐crystal X‐ray diffraction. ( 1 ) M = NH4, ( 5 ) M = Rb: monoclinic, P21/n, a = 1409,67(8), b = 2211,63(14), c = 1627,16(10) pm, β = 101,030(5)°, Z = 4 (crystal data for M = NH4); ( 2 ): monoclinic, Pn, a = 1345,26(14), b = 773,82(4), c = 2095,10(20) pm, β = 94,439(8)°, Z = 2; ( 3 ): orthorhombic, Pnaa, a = 931,59(13), b = 2213,3(5), c = 2223,9(4) pm, Z = 4; ( 4 ): monoclinic, P21/n, a = 999,50(6), b = 1711,33(10), c = 1517,45(9) pm, β = 99,021(5)°, Z = 4; ( 6 ): triclinic, , a = 705,16(9), b = 1137,93(14), c = 1678,90(20) pm, α = 73,719(10), β = 79,782(10), γ = 83,669(10)°, Z = 2; ( 7 ): triclinic, , a = 1519,25(6), b = 1702,49(7), c = 2136,41(9) pm, α = 102,641(3), β = 101,989(3), γ = 91,911(3)°, Z = 2. 1 : 1 cations centered by M, [M(db18c6)]+, are found in the structures of ( 1 – 6 ). In contrast, the triple decker cation found in ( 7 ) is less common. The crystal structures are completed by mostly asymmetrically linear I3? anions.  相似文献   

17.
The title compound 4 , i.e. 9‐chloro‐4,5‐dihydro‐2‐ethyl‐1‐(2,4,6‐trichlorophenyl)‐1H‐1,2,4‐triazolo[3,2‐d]‐[1,5]benzoxazepinium hexachloroantimonate, is a novel 6‐7‐5 tricyclic heterocycle. C18H14Cl4N3O·SbCJ6, M = 764.61, P21/c(#14), a = 13.457(4), b = 11.583(2), c = 18.992(3) Å α = 90, β = 110.11(1)°, Z = 4, V = 2780(1) Å3, Dc = 1.827 g/cc, μ (MoKα) = 19.69 cm?1, F(000) = 1488.00, T = 293 K, Rint = 0.055 for 3094 independent reflections with I>3.00σ(I). The five‐membered heterocyclic ring is nearly planar, with the trichlorophenyl ring at N(2) almost perpendicular to it. However, the seven‐membered ring is not planar, but adopts a twist‐boat conformation.  相似文献   

18.
Organometallic Compounds of Copper. XVIII. On the Reaction of the Alkyne Copper(I) Complexes [CuX(S‐Alkyne)] (X = Cl, Br, I; S‐Alkyne = 3,3,6,6‐Tetramethyl‐1‐thiacyclohept‐4‐yne) with the Phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) The alkyne copper(I) halide complexes [CuX(S‐Alkyne)]n ( 2 ) ( 2 a : X = Cl, 2 b : X = Br, 2 c : X = I; S‐Alkyne = 3,3,6,6‐tetramethyl‐1‐thiacyclohept‐4‐yne; n = 2, ∞) add the phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) to form the mono‐ and dinuclear copper compounds [(S‐Alkyne)CuX(PMe3)] ( 6 ) ( 6 a : X = Cl, 6 b : X = Br) and [(S‐Alkyne)CuX(μ‐dppe)CuX(S‐Alkyne)] ( 7 a : X = Cl, 7 b : X = Br, 7 c : X = I), respectively. By‐product in the reaction of 2 a with dppe is the tetranuclear complex [(S‐Alkyne)Cu(μ‐X)2Cu(μ‐dppe)2Cu(μ‐X)2Cu(S‐Alkyne)] ( 8 ). In case of the compounds 7 prolonged reaction times yield the alkyne‐free dinuclear copper complexes [Cu2X2(dppe)3] ( 9 ) ( 9 a : X = Cl, 9 b : X = Br, 9 c : X = I)). X‐ray diffraction studies were carried out with the new compounds 6 a , 6 b , 7 b , 8 , and 9 c .  相似文献   

19.
The disilyne R**Si≡SiR** (R** = SiMe(SitBu3)2), prepared as the first isolable and realtively stable silicon compound with a SiSi triple bond two years ago by dehalogenation of trans‐R**ClSi=SiClR** with LiC10H8 in thf at ‐78 °C (calc.: Si≡Si distance 2.072Å, Si‐Si≡Si bond angle 148°), forms with CH2=CH2 a [2+2] and with CH2=CH‐CH=CH2 a [2+4] cycloadduct. The ethene adduct takes up oxygen very easily with change of the Si=Si group into a SiOSiO ring with formation of R**Si(μ‐O)(μ‐O)(μ‐C2H4)SiR**. By heating the disilyne in heptane to ca. 50 °C in the presence of traces of thf it transforms into a monoxide of the ethene adduct with formation of R**Si(μ‐O)(μ‐C2H4)SiR**. In thf, the disilyne rearranges at r.t. and below by migration of a SitBu3 group with formation of a silyl substituted cyclotrisilene. X‐ray structure determinations of the ethene adduct and its mono‐ and dioxide are presented.  相似文献   

20.
1,3‐Dipentafluorophenyl‐2,2,2,4,4,4‐hexazido‐1,3‐diaza‐2,4‐diphosphetidine ( 1 ) was synthesized by the reaction of [(C6F5)NPCl3]2 with trimethylsilyl azide in CH2Cl2 and characterized by multinuclear NMR and vibrational spectroscopy. The molecular structure of the compound was determined by single‐crystal X‐ray structure analysis. [(C6F5)NP(N3)3]2 crystallizes in the monoclinic space group P21/n with a = 9.6414(2), b = 7.4170(1) and c = 15.9447(4) Å, β = 94.4374(9)°, with 2 formula units per unit cell. The bond situation in [(C6F5)NP(N3)3]2 has been studied on the basis of NBO analysis. The antisymmetric stretching vibration of the azide groups is discussed. The structural diversity of 1 and 1,3‐diphenyl‐2,2,2,4,4,4‐hexazido‐1,3‐diaza‐2,4‐diphosphetidine in solution and in the solid state depending on the aryl substituent at the nitrogen atom is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号