首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The BAB‐type triblock copolymers composed of a central poly(ethylene oxide) (PEO, nPEO = 1 000) block and two poly[(D ,L ‐lactic acid)‐co‐(glycolic acid)] end blocks with molecular weights between 900 and 1 600 exhibited an interesting phase transition behavior. The copolymer aqueous solution can form micelles with PLGA loops in the core and a PEO shell and groups of micelles because of bridging between micelles caused by the PLGA blocks with raising temperature. A possible micellar gelation mechanism was suggested.  相似文献   

2.
New biodegradable/biocompatible ABC block copolymers, poly(ethylene oxide)‐b‐poly(glycidol)‐b‐poly(L ,L ‐lactide) (PEO‐PGly‐PLLA), were synthesized. First, PEO‐b‐poly(1‐ethoxyethylglycidol)‐b‐PLLA was synthesized by a successive anionic ring‐opening copolymerization of ethylene oxide, 1‐ethoxyethylglycidyl ether, and L ,L ‐lactide initiated with potassium 2‐methoxyethanolate. In the second step, the 1‐ethoxyethyl blocking groups of 1‐ethoxyethylglycidyl ether were removed at weakly acidic conditions leaving other blocks intact. The resulting copolymers were composed of hydrophilic and hydrophobic segments joined by short polyglycidol blocks with one hydroxyl group in each monomeric unit. These hydroxyl groups may be used for further copolymer transformations. The PEO‐PGly‐PLLA copolymers with a molecular weight of PLLA blocks below 5000 were water‐soluble. Above the critical micellar concentration (ranging from 0.05 to1.0 g/L, depending on the composition of copolymer), copolymers formed macromolecular micelles with a hydrophobic PLLA core and hydrophilic PEO shell. The diameters of the micelles were about 25 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3750–3760, 2003  相似文献   

3.
This article describes the syntheses and solution behavior of model amphiphilic dendritic–linear diblock copolymers that self‐assemble in aqueous solutions into micelles with thermoresponsive shells. The investigated materials are constructed of poly(benzyl ether) monodendrons of the second generation ([G‐2]) or third generation ([G‐3]) and linear poly(N‐isopropylacrylamide) (PNIPAM). [G‐2]‐PNIPAM and [G‐3]‐PNIPAM dendritic–linear diblock copolymers have been prepared by reversible addition–fragmentation transfer (RAFT) polymerizations of N‐isopropylacrylamide with a [G‐2]‐ or [G‐3]‐based RAFT agent, respectively. The critical micelle concentration (cmc) of [G‐3]‐PNIPAM220, determined by surface tensiometry, is 6.3 × 10?6 g/mL, whereas [G‐2]‐PNIPAM235 has a cmc of 1.0 × 10?5 g/mL. Transmission electron microscopy results indicate the presence of spherical micelles in aqueous solutions. The thermoresponsive conformational changes of PNIPAM chains located at the shell of the dendritic–linear diblock copolymer micelles have been thoroughly investigated with a combination of dynamic and static laser light scattering and excimer fluorescence. The thermoresponsive collapse of the PNIPAM shell is a two‐stage process; the first one occurs gradually in the temperature range of 20–29 °C, which is much lower than the lower critical solution temperature of linear PNIPAM homopolymer, followed by the second process, in which the main collapse of PNIPAM chains takes place in the narrow temperature range of 29–31 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1357–1371, 2006  相似文献   

4.
Dendron‐like poly(ε‐benzyloxycarbonyl‐L ‐lysine)/linear poly(ethylene oxide) block copolymers (i.e., Dm‐PZLys‐b‐PEO, m = 0 and 3; Dm are the propargyl focal point poly(amido amine) dendrons having 2m primary amine groups) were for the first time synthesized by combining ring‐opening polymerization (ROP) of ε‐benzyloxycarbonyl‐L ‐lysine N‐carboxyanhydride (Z‐Lys‐NCA) and click chemistry, where Dm‐PZLys homopolypeptides were click conjugated with azide‐terminated PEO. Their molecular structures and physical properties were characterized in detail by FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction. Both homopolypeptides and copolymers presented a liquid crystalline phase transition for PZLys block, and the transition was irreversible. Moreover, the degree of crystallinity of PEO block within linear copolymers decreased from 96.2% to 20.4% with increasing PZLys composition, whereas that within dendritic copolymers decreased to zero. The secondary conformation of PZLys progressively changed from β‐sheet to α‐helix with increasing the chain length. These copolymers self‐assembled into spherical nanoparticles in aqueous solution, and the anticancer drug doxorubicin‐loaded nanoparticles gave a similar morphology compared with their blank counterparts. The drug‐loaded nanoparticles showed a triphasic drug‐release profile at aqueous pH 7.4 or 5.5 and 37 °C and sustained a longer drug‐release period for about 2 months. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
pH‐Sensitive block glycopolymers of poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) and poly(3‐O‐methacryloy‐α,β‐D ‐glucopyranose) (PMAGlc) were synthesized via reversible addition–fragmentation chain transfer (RAFT) radical polymerization based on protected glycomonomer 3‐O‐methacryloyl‐1,2:5,6‐di‐O‐isopropylidene‐D ‐glucofuranose (MAIpGlc). It was found that RAFT homopolymerization of MAIpGlc proceeded in a controlled fashion with 4‐cyanopentanoic acid dithiobenzoate as chain transfer agent. Using the dithioester‐capped PDEAEMA as macro‐RAFT agent, block copolymerization of MAIpGlc was in good control as indicated by the linear pseudo first‐order kinetic plot, the linear increment of number‐average molecular weights as well as narrow and symmetrical gel permeation chromatography peaks, and low polydispersities. Well‐defined diblock copolymers of DEAEMA and MAIpGlc were prepared successfully through the chain extension of PDEAEMA. The deprotection of MAIpGlc units in trifluoroacetic acid/H2O solution afforded PDEAEMA‐b‐PMAGlc block glycopolymer. The self‐assembly behavior of PDEAEMA‐b‐PMAGlc in aqueous solution was investigated by using 1H NMR, UV‐vis spectroscopy, dynamic light scattering, and transmission electron microscopy. The results demonstrated that spherical micelles with PDEAEMA as the hydrophobic cores and PMAGlc as the hydrophilic shells were formed in alkaline aqueous solution. These glucose‐installed micelles had specific recognition with Concanavalin A. The combination of pH‐sensitivity of PDEAEMA and biomolecular recognition of PMAGlc in one micellar system may create a multifunctional platform for targeted delivery, biomimetics, and biodection. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3350–3361, 2010  相似文献   

6.
Amphiphilic diblock copolymers that contained hydrophilic poly[bis(potassium carboxylatophenoxy)phosphazene] segments and hydrophobic polystyrene sections were synthesized via the controlled cationic polymerization of Cl3P?NSiMe3 with a polystyrenyl–phosphoranimine as a macromolecular terminator. These block copolymers self‐associated in aqueous media to form micellar structures which were investigated by fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. The size and shape of the micelles were not affected by the introduction of different monovalent cations (Li+, K+, Na+, and Cs+) into the stable micellar solutions. However, exposure to divalent cations induced intermicellar crosslinking through carboxylate groups, which caused precipitation of the ionically crosslinked aggregates from solution. This micelle‐coupling behavior was reversible: the subsequent addition of monovalent cations caused the redispersion of the polystyrene‐block‐poly[bis(potassium carboxylatophenoxy)phosphazene] (PS–KPCPP) block copolymers into a stable micellar solution. Aqueous micellar solutions of PS–KPCPP copolymers also showed pH‐dependent behavior. These attributes make PS–KPCPP block copolymers suitable for studies of guest retention and release in response to ion charge and pH. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2912–2920, 2005  相似文献   

7.
Novel, biodegradable poly(?‐caprolactone)‐block‐poly(trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline)‐block‐poly(?‐caprolactone) triblock copolymers were synthesized by ring‐opening polymerization from dihydroxyl‐terminated macroinitiator poly(trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline) (PHpr) and ?‐caprolactone (?‐CL) with stannous octoate as the catalyst. The molecular weights were characterized with gel permeation chromatography and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. With an increase in the contents of ?‐CL incorporated into the copolymers, a decrease in the glass‐transition temperature (Tg) was observed. The Tg values of copoly(4‐phenyl‐?‐caprolactone) and copoly(4‐methyl‐?‐caprolactone) were higher than Tg of copoly(?‐caprolactone). Their micellar characteristics in an aqueous phase were investigated with fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. The block copolymers formed micelles in the aqueous phase with critical micelle concentrations in the range of 1.00–1.36 mg L?1. With higher molecular weights and hydrophobic components in the copolymers, a higher critical micelle concentration was observed. As the feed weight ratio of antitriptyline hydrochloride (AM) to the polymer increased, the drug loading increased. The micelles exhibited a spherical shape, and the average size was less than 250 nm. The in vitro hydrolytic degradation and controlled drug release properties of the triblock copolymers were also investigated. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4268–4280, 2006  相似文献   

8.
The first‐ and second‐generation well‐defined thermoresponsive amphiphilic linear–dendritic diblock copolymers based on hydrophilic linear poly(N‐vinylcaprolactam) and hydrophobic dendritic aromatic polyamide have been synthesized via reversible addition fragmentation chain transfer polymerization of N‐vinylcaprolactam by employing dendritic chain‐transfer agents possessing a single dithiocarbamate moiety at the focal point. These linear–dendritic copolymers exhibit reversible temperature‐dependent phase transition behaviors in aqueous solution as characterized by turbidity measurements using UV–vis spectroscopy. Their lower critical solution temperatures depend on the generation of the dendritic aromatic polyamides and the concentrations of the copolymer solutions. These amphiphilic copolymers are able to form nanospherical micelles in the aqueous solution as revealed by fluorescent spectroscopy, dynamic light scattering, and transmission electron microscope (TEM). The core–shell structure of micelles has been proved by 1H NMR analyses of the micelles in D2O. The micelles loaded with indomethacin as a model drug showed high‐drug loading capacity and thermoresponsive drug release behavior. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3240–3250  相似文献   

9.
In this work, the polystyrene‐b‐poly(ethylene oxide) (PS‐b‐PEO) block copolymers with a trithiocarbonate group between the blocks were prepared by polymerization of styrene in the presence of a trithiocarbonate reversible addition fragmentation chain transfer (RAFT) agent connected with PEO. Decomposition of the trithiocarbonate group by UV irradiation was investigated in three different types of solvent: tetrahydrofuran (THF, common solvent for both blocks), cyclohexane/dioxane mixture (selective solvent for the PS block) and N,N‐dimethylformamide (DMF)/ethanol mixture (selective solvent for the PEO block). It is found that cleavage of the block copolymers can take place in all these three solvents and the cleavage ratio ranges from 76 to 86%. The micellar morphologies in selective solvents before and after cleavage were examined. It is observed that the size of the micelles is reduced after cleavage and sometimes aggregation of the micelles occurs due to removal of the corona of micelles. It shows that this work provides a facile and general method for synthesis of cleavable block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3834–3840, 2010  相似文献   

10.
Here we report the synthesis and solution characterization of a novel series of AB diblock copolymers with neutral, water‐soluble A blocks consisting of N,N‐dimethylacrylamide and pH‐responsive B blocks of N,N‐dimethylvinylbenzylamine. To our knowledge, this represents the first example of an acrylamido–styrenic block copolymer prepared directly in a homogeneous aqueous solution. The best blocking order [with poly(N,N‐dimethylacrylamide) as a macro‐chain‐transfer agent] yielded well‐defined block copolymers with minimal homopolymer impurities. The reversible aggregation of these block copolymers in aqueous media was studied with 1H NMR spectroscopy and dynamic light scattering. Finally, an example of core‐crosslinked micelles was demonstrated by the addition of a difunctional crosslinking agent to a micellar solution of the parent block copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1724–1734, 2004  相似文献   

11.
Disulfide‐centered star‐shaped poly(ε‐benzyloxycarbonyl‐l ‐lysine)‐b‐poly(ethylene oxide) block copolymers (i.e., A2B4 type Cy‐PZlys‐b‐PEO) were synthesized by the combination of ring‐opening polymerization and thiol‐yne chemistry. Their molecular structures and physical properties were characterized in detail by FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscope. Despite mainly exhibiting an α‐helix conformation, the inner PZlys blocks within copolymers greatly prohibited the crystallinity of the outer PEO blocks and presented a liquid crystal phase transition behavior in solid state. These block copolymers Cy‐PZlys‐b‐PEO self‐assembled into nearly spherical micelles in aqueous solution, which had a hydrophobic disulfide‐centered PZlys core surrounded by a hydrophilic PEO corona. As monitored by means of DLS and TEM, these micelles were progressively reduced to smaller micelles in 10 mM 1,4‐dithiothreitol at 37 °C and finally became ones with a half size, demonstrating a reduction‐sensitivity. Despite a good drug‐loading property, the DOX‐loaded micelles of Cy‐PZlys‐b‐PEO exhibited a reduction‐triggered drug release profile with an improved burst‐release behavior compared with the linear counterpart. Importantly, this work provides a versatile strategy for the synthesis of the disulfide‐centered star‐shaped polypeptide block copolymers potential for intracellular glutathione‐triggered drug delivery systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2000–2010  相似文献   

12.
Amphiphilic poly(n‐butylene oxide)‐b‐poly(ethylene oxide) (PBO–PEO) diblock copolymers of various compositions were synthesized and studied as modifiers for epoxy resins. In blends of PBO–PEO, epoxy resin, and curing agent, the copolymers formed well‐defined microstructures that persisted upon curing of the epoxy. The resulting morphologies were vesicles, worm‐like micelles, and spherical micelles (in order of increasing size of PEO block), as well as transitional morphologies. Addition of 5% by weight of these block copolymers improved the fracture toughness of the epoxy by as much as 19 times with relatively small reduction in the elastic modulus. The highest level of toughness was measured in a system containing branched worm‐like micelles. Close examination of the fracture surfaces of these compositions suggests that although all the dispersed morphologies played a similar role to inclusions in particle‐toughened thermosets, crack deflection toughening contributed to the significantly higher levels of toughness in the worm‐like micelle systems. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Chem 43: 1950–1965, 2005  相似文献   

13.
Block copolymers of acryloxy propyl triethoxysilane and styrene were prepared through nitroxide‐mediated polymerization using alkoxyamine initiators based on Ntert‐butyl‐1‐diethylphosphono‐2,2‐dimethylpropyl nitroxide. The copolymers were characterized by 1H NMR, size exclusion chromatography and differential scanning calorimetry. Their micellar behavior in dioxane/methanol solutions was examined through static light scattering and transmission electron microscopy (TEM). TEM indicated the successful formation of spherical micelles which were subsequently frozen by the sol–gel process. Hydrolysis–condensation of the reactive ethoxysilyl side groups was followed by FTIR, 1H NMR, and 29Si NMR. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 784–793, 2010  相似文献   

14.
Four generations of new amphiphilic thermoresponsive linear‐dendritic block copolymers (LDBCs) with a linear poly(N‐vinylcaprolactam) (PNVCL) block and a dendritic poly(benzyl ether) block are synthesized by atom transfer radical polymerization (ATRP) of N‐vinylcaprolactam (NVCL) using dendritic poly(benzyl ether) chlorides as initiators. The copolymers have been characterized by 1H NMR, FTIR, and GPC showing controlled molecular weight and narrow molecular weight distribution (PDI ≤ 1.25). Their self‐organization in aqueous media and thermoresponsive property are highly dependent on the generation of dendritic poly(benzyl ether) block. It is observed for the LDBCs that the self‐assembled morphology changes from irregularly spherical micelles, vesicles, rod‐like large compound vesicles (LCVs), to the coexistence of spherical micelles and rod‐like LCVs, as the generation of the dendritic poly(benzyl ether) increases. The results of a cytotoxicity study using an MTT assay method with L929 cells show that the LDBCs are biocompatible. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 300–308  相似文献   

15.
Amphiphilic BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH diblock and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐block‐PLA‐OH triblock copolymers incorporating thermoresponsive poly(ethylene oxide‐stat‐propylene oxide) (PEO‐stat‐PPO) blocks were prepared by ring‐opening polymerization of lactide (LA) initiated by macroinitiators formed from treating BuO‐(PEO‐stat‐PPO)‐OH and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH with AlEt3. MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH was prepared by coupling MeO‐PEO‐OH and HO‐(PEO‐stat‐PPO)‐OH, followed by chromatographic purification. The cloud points of 0.2% aqueous solutions are between 36 and 46 °C for the diblock copolymers that contain a 50 wt % EO thermoresponsive block and 78 °C for the triblock copolymer that contains a 75 wt % EO thermoresponsive block. Variable temperature 1H NMR spectra recorded on D2O solutions of the diblock copolymers display no PLA resonances below the cloud point and fairly sharp PLA resonances above the cloud point, suggesting that desolvation of the thermoresponsive block increases the miscibility of the two blocks. Preliminary characterization of the micelles formed in aqueous solutions of BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH conducted using laser scanning confocal microscopy and pulsed gradient spin echo NMR point to significant changes in the size of the micellar aggregates as a function of temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5156–5167, 2005  相似文献   

16.
Well‐defined poly(L ‐lactide)‐b‐poly(ethylene oxide) (PLLA‐b‐PEO) copolymers with different branch arms were synthesized via the controlled ring‐opening polymerization of L ‐lactide followed by a coupling reaction with carboxyl‐terminated poly(ethylene oxide) (PEO); these copolymers included both star‐shaped copolymers having four arms (4sPLLA‐b‐PEO) and six arms (6sPLLA‐b‐PEO) and linear analogues having one arm (LPLLA‐b‐PEO) and two arms (2LPLLA‐b‐PEO). The maximal melting point, cold‐crystallization temperature, and degree of crystallinity (Xc) of the poly(L ‐lactide) (PLLA) block within PLLA‐b‐PEO decreased as the branch arm number increased, whereas Xc of the PEO block within the copolymers inversely increased. This was mainly attributed to the relatively decreasing arm length ratio of PLLA to PEO, which resulted in various PLLA crystallization effects restricting the PEO block. These results indicated that both the PLLA and PEO blocks within the block copolymers mutually influenced each other, and the crystallization of both the PLLA and PEO blocks within the PLLA‐b‐PEO copolymers could be adjusted through both the branch arm number and the arm length of each block. Moreover, the spherulitic growth rate (G) decreased as the branch arm number increased: G6sPLLA‐b‐PEO < G4sPLLA‐b‐PEO < G2LPLLA‐b‐PEO < GLPLLA‐b‐PEO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2034–2044, 2006  相似文献   

17.
Self‐assembly of amphiphilic ABA random triblock copolymers in water serves as a novel approach to create unique structure micelles connected with flexible linkages. The ABA triblock copolymers consist of amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) and hydrophobic dodecyl pendants as the A segments and a hydrophilic poly(ethylene oxide) (PEO) as the middle B segment. The A block is varied in dodecyl methacrylate content of 20%–50% and degree of polymerization (DP) of 100‐200. By controlling the composition and DP of the A block, various architectures can be tailor‐made as micelles in water: PEO‐linked double core unimer micelles, PEO‐looped unimer or dimer micelles, and multichain micelles. Those PEO‐linked or looped micelles further exhibit thermoresponsive solubility in water. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 313–321  相似文献   

18.
The design and synthesis of novel linear–dendritic diblock amphiphiles with linear poly(acrylic acid) (PAA) as the hydrophilic block and dendritic poly(benzyl ether) as the hydrophobic block are described. The synthetic process consisted of two steps: a poly(methyl acrylate) (PMA)–poly(benzyl ether) dendrimer series were synthesized with atom transfer radical polymerization, and through the hydrolysis of linear PMA block into PAA, amphiphilic block copolymers, the PAA–poly(benzyl ether) dendrimer series, were obtained. The copolymers were characterized by 1H NMR, Fourier transform infrared, and size exclusion chromatography and exhibited well‐defined architectures and low polydispersities. When the generation number of the dendritic block (Gi) less or equal to 3 and the degree of polymerization of the linear chain (n) was greater than 10, the amphiphiles were water‐soluble. The solution intrinsic viscosity increased with both the length of linear chain and the generation number of the dendritic block. The results obtained demonstrate that dendritic blocks play an unusual role in aqueous solutions of amphiphiles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4282–4288, 2000  相似文献   

19.
A series of highly ordered mesoporous carbonaceous frameworks with diverse symmetries have been successfully synthesized by using phenolic resols as a carbon precursor and mixed amphiphilic surfactants of poly(ethylene oxide)‐b‐poly(propylene oxide)‐b‐poly(ethylene oxide) (PEO–PPO–PEO) and reverse PPO–PEO–PPO as templates by the strategy of evaporation‐induced organic–organic self‐assembly (EISA). The transformation of the ordered mesostructures from face‐centered (Fd m) to body‐centered cubic (Im m), then 2D hexagonal (P6mm), and eventually to cubic bicontinuous (Ia d) symmetry has been achieved by simply adjusting the ratio of triblock copolymers to resol precursor and the relative content of PEO–PPO–PEO copolymer F127, as confirmed by small‐angle X‐ray scattering (SAXS), transmission electron microscopy (TEM), and nitrogen‐sorption measurements. The blends of block copolymers can interact with resol precursors and tend to self‐assemble into cross‐linking micellar structures during the solvent‐evaporation process, which provides a suitable template for the construction of mesostructures. The assembly force comes from the hydrogen‐bonding interactions between organic mixed micelles and the resol‐precursor matrix. The BET surface area for the mesoporous carbonaceous samples calcined at 600 °C under nitrogen atmosphere is around 600 m2 g?1, and the pore size can be adjusted from 2.8 to 5.4 nm. An understanding of the organic–organic self‐assembly behavior in the mixed amphiphilic surfactant system would pave the way for the synthesis of mesoporous materials with controllable structures.  相似文献   

20.
To create a novel vector for specifically delivering anticancer therapy to solid tumors, we used diafiltration to synthesize pH‐sensitive polymeric micelles. The micelles, formed from a tetrablock copolymer [poly(ethylene glycol)‐b‐poly(L ‐histidine)‐b‐poly(L ‐lactic acid)‐b‐poly(ethylene glycol)] consisted of a hydrophobic poly(L ‐histidine) (polyHis) and poly(L ‐lactic acid) (PLA) core and a hydrophilic poly(ethylene glycol) (PEG) shell, in which we encapsulated the model anticancer drug doxorubicin (DOX). The robust micelles exhibited a critical micellar concentration (CMC) of 2.1–3.5 µg/ml and an average size of 65–80 nm pH 7.4. Importantly, they showed a pH‐dependent micellar destabilization, due to the concurrent ionization of the polyHis and the rigidity of the PLA in the micellar core. In particular, the molecular weight of PLA block affected the ionization of the micellar core. Depending on the molecular weight of the PLA block, the micelles triggering released DOX at pH 6.8 (i.e. cancer acidic pH) or pH 6.4 (i.e. endosomal pH), making this system a useful tool for specifically treating solid cancers or delivering cytoplasmic cargo in vivo. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号