首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A finite difference scheme for the two-dimensional, second-order, nonlinear elliptic equation is developed. The difference scheme is derived using the local solution of the differential equation. A 13-point stencil on a uniform mesh of size h is used to derive the finite difference scheme, which has a truncation error of order h4. Well-known iterative methods can be employed to solve the resulting system of equations. Numerical results are presented to demonstrate the fourth-order convergence of the scheme. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The coupled nonlinear Schrödinger–Boussinesq (SBq) equations describe the nonlinear development of modulational instabilities associated with Langmuir field amplitude coupled to intense electromagnetic wave in dispersive media such as plasmas. In this paper, we present a conservative compact difference scheme for the coupled SBq equations and analyze the conservative property and the existence of the scheme. Then we prove that the scheme is convergent with convergence order O(τ2 + h4) in L‐norm and is stable in L‐norm. Numerical results verify the theoretical analysis.  相似文献   

3.
This is the further work on compact finite difference schemes for heat equation with Neumann boundary conditions subsequent to the paper, [Sun, Numer Methods Partial Differential Equations (NMPDE) 25 (2009), 1320–1341]. A different compact difference scheme for the one‐dimensional linear heat equation is developed. Truncation errors of the proposed scheme are O2 + h4) for interior mesh point approximation and O2 + h3) for the boundary condition approximation with the uniform partition. The new obtained scheme is similar to the one given by Liao et al. (NMPDE 22 (2006), 600–616), while the major difference lies in no extension of source terms to outside the computational domain any longer. Compared with ones obtained by Zhao et al. (NMPDE 23 (2007), 949–959) and Dai (NMPDE 27 (2011), 436–446), numerical solutions at all mesh points including two boundary points are computed in our new scheme. The significant advantage of this work is to provide a rigorous analysis of convergence order for the obtained compact difference scheme using discrete energy method. The global accuracy is O2 + h4) in discrete maximum norm, although the spatial approximation order at the Neumann boundary is one lower than that for interior mesh points. The analytical techniques are important and can be successfully used to solve the open problem presented by Sun (NMPDE 25 (2009), 1320–1341), where analyzed theoretical convergence order of the scheme by Liao et al. (NMPDE 22 (2006), 600–616) is only O2 + h3.5) while the numerical accuracy is O2 + h4), and convergence order of theoretical analysis for the scheme by Zhao et al. (NMPDE 23 (2007), 949–959) is O2 + h2.5), while the actual numerical accuracy is O2 + h3). Following the procedure used for the new obtained difference scheme in this work, convergence orders of these two schemes can be proved rigorously to be O2 + h4) and O2 + h3), respectively. Meanwhile, extension to the case involving the nonlinear reaction term is also discussed, and the global convergence order O2 + h4) is proved. A compact ADI difference scheme for solving two‐dimensional case is derived. Finally, several examples are given to demonstrate the numerical accuracy of new obtained compact difference schemes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

4.
We consider a mathematical model for thermal analysis in a 3D N‐carrier system with Neumann boundary conditions, which extends the concept of the well‐known parabolic two‐step model for micro heat transfer. To solve numerically the complex system, we first reduce 3D equations in the model to a succession of 1D equations by using the local one‐dimensional (LOD) method. The obtained 1D equations are then solved using a fourth‐order compact finite difference scheme for the interior points and a second‐order combined compact finite difference scheme for the points next to the boundary, so that the Neumann boundary condition can be applied directly without discretizing. By using matrix analysis, the compact LOD scheme is shown to be unconditionally stable. The accuracy of the solution is tested using two numerical examples. Results show that the solutions obtained by the compact LOD finite difference scheme are more accurate than those obtained by a Crank‐Nicholson LOD scheme, and the convergence rate with respect to spatial variables is about 2.6. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

5.
The system of two quasilinear elliptic equations is approximated by the method of lines, which has the truncation error O(h2) at points neighboring the boundary and O(h4) at the most interior points. It is proved that the global error of the method is O(h4) at all mesh points. The two-point boundary value problem for the system of ordinary differential equations that arises from the method of lines is solved by the O(h4) convergent finite difference scheme, suitable to the equations of the form uxx = f(x, u) without the first derivative ux. The system of algebraic equations obtained by the full discretization is solved by Gauss elimination method for three diagonal matrices combined with the method of iterations. A numerical example is presented.  相似文献   

6.
The energy‐conserved splitting finite‐difference time‐domain (EC‐S‐FDTD) method has recently been proposed to solve the Maxwell equations with second order accuracy while numerically keep the L2 energy conservation laws of the equations. In this paper, the EC‐S‐FDTD scheme for the 3D Maxwell equations is proved to be energy‐conserved and unconditionally stable in the discrete H1 norm. The EC‐S‐FDTD scheme is of second‐order accuracy both in time step and spatial steps, which suggests the super‐convergence of this scheme in the discrete H1 norm. And the divergence of the electric field of the EC‐S‐FDTD scheme in the discrete L2 norm is second‐order accurate. Numerical experiments confirm our theoretical analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper,a new conservative finite difference scheme with a parameter θ is proposed for the initial-boundary problem of the Klein-Gordon-Zakharov (KGZ) equations.Convergence of the numerical solutions are proved with order O(h 2 + τ 2) in the energy norm.Numerical results show that the scheme is accurate and efficient.  相似文献   

8.
The semi‐linear equation −uxx − ϵuyy = f(x, y, u) with Dirichlet boundary conditions is solved by an O(h4) finite difference method, which has local truncation error O(h2) at the mesh points neighboring the boundary and O(h4) at most interior mesh points. It is proved that the finite difference method is O(h4) uniformly convergent as h → 0. The method is considered in the form of a system of algebraic equations with a nine diagonal sparse matrix. The system of algebraic equations is solved by an implicit iterative method combined with Gauss elimination. A Mathematica module is designed for the purpose of testing and using the method. To illustrate the method, the equation of twisting a springy rod is solved. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 395–407, 2000  相似文献   

9.
This article applies the first‐order system least‐squares (fosls) finite element method developed by Cai, Manteuffel and McCormick to the compressible Stokes equations. By introducing a new dependent velocity flux variable, we recast the compressible Stokes equations as a first‐order system. Then it is shown that the ellipticity and continuity hold for the least‐squares functionals employing the mixture of H?1 and L2, so that the fosls finite element methods yield best approximations for the velocity flux and velocity. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:689–699, 2001  相似文献   

10.
In this paper, we study the convergence of a finite difference scheme on nonuniform grids for the solution of second-order elliptic equations with mixed derivatives and variable coefficients in polygonal domains subjected to Dirichlet boundary conditions. We show that the scheme is equivalent to a fully discrete linear finite element approximation with quadrature. It exhibits the phenomenon of supraconvergence, more precisely, for s ∈ [1,2] order O(h s )-convergence of the finite difference solution, and its gradient is shown if the exact solution is in the Sobolev space H 1+s (Ω). In the case of an equation with mixed derivatives in a domain containing oblique boundary sections, the convergence order is reduced to O(h 3/2?ε) with ε > 0 if u ∈ H 3(Ω). The second-order accuracy of the finite difference gradient is in the finite element context nothing else than the supercloseness of the gradient. For s ∈ {1,2}, the given error estimates are strictly local.  相似文献   

11.
The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell’s equations.Then the corresponding optimal error estimates are derived.The difficulty in construction of this finite element scheme is how to choose a compatible pair of degrees of freedom and shape function space so as to make the consistency error due to the nonconformity of the element being of order O(h 3 ) ,properly one order higher than that of its interpolation error O(h 2 ) in the broken energy norm,where h is the subdivision parameter tending to zero.  相似文献   

12.
In this article, we develop a two‐grid algorithm for nonlinear reaction diffusion equation (with nonlinear compressibility coefficient) discretized by expanded mixed finite element method. The key point is to use two‐grid scheme to linearize the nonlinear term in the equations. The main procedure of the algorithm is solving a small‐scaled nonlinear equations on the coarse grid and dealing with a linearized system on the fine space using the Newton iteration with the coarse grid solution. Error estimation to the expanded mixed finite element solution is analyzed in detail. We also show that two‐grid solution achieves the same accuracy as long as the mesh sizes satisfy H = O(h1/2). Two numerical experiments are given to verify the effectiveness of the algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

13.
In this article, we discuss finite‐difference methods of order two and four for the solution of two‐and three‐dimensional triharmonic equations, where the values of u,(?2u/?n2) and (?4u/?n4) are prescribed on the boundary. For 2D case, we use 9‐ and for 3D case, we use 19‐ uniform grid points and a single computational cell. We introduce new ideas to handle the boundary conditions and do not require to discretize the boundary conditions at the boundary. The Laplacian and the biharmonic of the solution are obtained as byproduct of the methods. The resulting matrix system is solved by using the appropriate block iterative methods. Computational results are provided to demonstrate the fourth‐order accuracy of the proposed methods. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

14.
We study here a finite volume scheme for a diffusion-convection equation on an open bounded set Ω of ?2, using a triangular mesh for the discretization of Ω. The 4-point numerical scheme is presented along with the geometrical assumptions on the mesh. An error estimate of order h on the discrete L2 norm is obtained, where h denotes the “size” of the mesh. The proof uses an estimate of order h of the consistency error on the fluxes and an estimate of the number of edges of the mesh between one given triangle and the boundary Ω. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in H(div) and the velocity in L2. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g., the Raviart‐Thomas discretization which is related to the Crouzeix‐Raviart nonconforming finite element scheme in the lowest‐order case. The effective and guaranteed a posteriori error control for this nonconforming velocity‐oriented discretization can be generalized to the error control of some piecewise quadratic velocity approximation that is related to the discrete pseudostress. The analysis allows for local inf‐sup constants which can be chosen in a global partition to improve the estimation. Numerical examples provide strong evidence for an effective and guaranteed error control with very small overestimation factors even for domains with large anisotropy.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1411–1432, 2016  相似文献   

16.
The two-level linearized and local uncoupled spatial second order and compact difference schemes are derived for the two-component evolutionary system of nonhomogeneous Korteweg-de Vries equations. It is shown by the mathematical induction that these two schemes are uniquely solvable and convergent in a discrete L norm with the convergence order of O(τ2 + h2) and O(τ2 + h4), respectively, where τ and h are the step sizes in time and space. Three numerical examples are given to confirm the theoretical results.  相似文献   

17.
This paper describes existence, uniqueness and special eigenfunction representations of H1‐solutions of second order, self‐adjoint, elliptic equations with both interior and boundary source terms. The equations are posed on bounded regions with Dirichlet conditions on part of the boundary and Neumann conditions on the complement. The system is decomposed into separate problems defined on orthogonal subspaces of H1(Ω). One problem involves the equation with the interior source term and the Neumann data. The other problem just involves the homogeneous equation with Dirichlet data. Spectral representations of the solution operators for each of these problems are found. The solutions are described using bases that are, respectively, eigenfunctions of the differential operator with mixed null boundary conditions, and certain mixed Steklov eigenfunctions. These series converge strongly in H1(Ω). Necessary and sufficient conditions for the Dirichlet part of the boundary data to have a finite energy extension are described. The solutions for a problem that models a cylindrical capacitor is found explicitly. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The coefficients for a nine–point high–order accuracy discretization scheme for a biharmonic equation ∇ 4u = f(x, y) (∇2 is the two–dimensional Laplacian operator) are derived. The biharmonic problem is defined on a rectangular domain with two types of boundary conditions: (1) u and ∂2u/∂n2 or (2) u and ∂u/part;n (where ∂/part;n is the normal to the boundary derivative) are specified at the boundary. For both considered cases, the truncation error for the suggested scheme is of the sixth-order O(h6) on a square mesh (hx = hy = h) and of the fourth-order O(h4xh2xh2y h4y) on an unequally spaced mesh. The biharmonic equation describes the deflection of loaded plates. The advantage of the suggested scheme is demonstrated for solving problems of the deflection of rectangular plates for cases of different boundary conditions: (1) a simply supported plate and (2) a plate with built-in edges. In order to demonstrate the high–order accuracy of the method, the numerical results are compared with exact solutions. © John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 13: 375–391, 1997  相似文献   

19.
In this article, two recent proposed compact schemes for the heat conduction problem with Neumann boundary conditions are analyzed. The first difference scheme was proposed by Zhao, Dai, and Niu (Numer Methods Partial Differential Eq 23, (2007), 949–959). The unconditional stability and convergence are proved by the energy methods. The convergence order is O2 + h2.5) in a discrete maximum norm. Numerical examples demonstrate that the convergence order of the scheme can not exceeds O2 + h3). An improved compact scheme is presented, by which the approximate values at the boundary points can be obtained directly. The second scheme was given by Liao, Zhu, and Khaliq (Methods Partial Differential Eq 22, (2006), 600–616). The unconditional stability and convergence are also shown. By the way, it is reported how to avoid computing the values at the fictitious points. Some numerical examples are presented to show the theoretical results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

20.
In this paper a two‐dimensional solute transport model is considered to simulate the leaching of copper ore tailing using sulfuric acid as the leaching agent. The mathematical model consists in a system of differential equations: two diffusion–convection‐reaction equations with Neumann boundary conditions, and one ordinary differential equation. The numerical scheme consists in a combination of finite volume and finite element methods. A Godunov scheme is used for the convection term and an P1‐FEM for the diffusion term. The convergence analysis is based on standard compactness results in L2. Some numerical examples illustrate the effectiveness of the scheme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号