首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bis(triphenylgermyl)zinc (Ph3Ge)2Zn (1), prepared by the reaction of diethylzinc (Et2Zn) with two molar amounts of triphenylgermane (Ph3GeH), was easily reacted by a small amount of oxygen to give tetrameric oxide (Ph3GeZnO)4 (2). Four zinc and four oxygen atoms in 2 are arranged such that a cube is formed as determined by X-ray diffraction analysis. Further oxidation of 2 led to the formation of digermoxane, (Ph3Ge)2O as a final product.  相似文献   

2.
The polymeric chains of [Sn(CH3)3(C28H25O3Ge)]n contain trimethyltin moieties bridging two neighboring 3‐(triphenylgermyl)‐3‐o‐methoxypropionate ligands via carboxyl groups. The germanium atom has a distorted tetrahedral geometry and the tin atom has a distorted trigonal‐bipyramidal geometry, the latter with three methyl groups in the equatorial plane and oxygen atoms defining the axial positions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
New stannylboranes were prepared from tetramethylpiperidino dichloroborane or B‐bromo‐pentamethylborazine with lithium triorganylstannides LiSnR3. Only double stannylation was possible with tmpBCl2 and LiSnMe3, while tmpBCl(SnPh3) was obtained by employing LiSnPh3. This chloride reacted with LiGePh3 to the stannyl germyl borane tmpB(GePh3)(SnPh3). On the other hand, PhMeNBCl2 and an excess of LiSnMe3 gave the borate Li[B(NMePh)(SnMe3)3], which was isolated as a solvate with 4 molecules of THF. The compound is present in the solid state as a solvent separated ion pair. The borate Li(H3BSnMe3) · 2 THF is dimeric in the solid state. Dimerization occurs via two single Li–H–B bridges and a Li–H(B)–Li bridge. The B–Sn bonds in the borates are practically of the same lengths as those in the boranes. In solution all BH bonds of this trihydridoborate are equivalent.  相似文献   

4.
3-(Trichlorogermyl)propanoic acid (la) reacts with phenylmagnesium bromide in malar ratio 1:4 to give 3-(triphenylgermyl)propanoic acid (2a).In the compounds la and 2a theβ-carboxylic functional group shows some unusual properties when they react with excess of phenylmagnesium bromide.The compound la reacts with phenylmagnesium bromide in molar ratio 1:5 to give phenyl 2-(triphenylgermyl)ethylketone (3a) and in molar ratio 1:6 to give l,l-diphenyl-3-(triphenylgermyl)propanol (4a).The compound 2a reacts with phenylmagnesium bromide in molar ratio 1:2 to give 3a and in molar ratio 1:3 to give 4a also.Dehydration of the compound 4a with dilute hydrochloric acid seems especially easy.Moreover,the compound la reacted with phenylmagnsium bromide in molar ratio 1:6,then the mixture was treated with dilute hydrochloric acid to give 1,1-diphenyl-3-(triphenylgermyl)-1-propene (5a) in one pot reaction.Alkyl Ge-C bond in the compound 5a can be cleaved selectively by lithium aluminium hydride ( LiAlH4) in good yiel  相似文献   

5.
Germanium(II)‐, Tin(II)‐ and Lead(II)‐Derivatives of the polycyclic Alumosiloxane [Ph2SiO]8[Al(O)OH]4 Five new derivatives of the polycyclic alumosiloxane [Ph2SiO]8[Al(O)OH]4 have been synthesized by replacement of the protic hydrogen atoms on the hydroxy‐groups attached to the aluminium atoms by the divalent group 14 elements germanium, tin and lead. The compounds can be divided in those with one metal atom per alumosiloxane moiety, [Ph2SiO]8[Al(O)OH]2[AlO2]M (M=Ge, Sn), and those with complete substitution of the protic hydrogen atoms by metal atoms like [Ph2SiO]8[AlO2]4M2 (M= Sn, Pb). Always one element of the series Ge, Sn, Pb is missing in the two types of compounds. Crystal structure analyses of [Ph2SiO]8[Al(O)OH]2[AlO2]2M · 2 C4H8O2 (M= Ge ( 1 ), Sn ( 2a )), [Ph2SiO]8[Al(O)OH]2[AlO2]2Sn · 2 THF ( 2b ) and [Ph2SiO]8[AlO2]4M2 (M= Sn ( 3 ), Pb ( 4 )) have been performed elucidating either polycyclic basket‐type ( 1 , 2a , 2b ) or closed polyhedral structures ( 3 , 4 ).  相似文献   

6.
The reduction of digallane [(dpp‐bian)Ga? Ga(dpp‐bian)] ( 1 ) (dpp‐bian=1,2‐bis[(2,6‐diisopropylphenyl)imino]acenaphthene) with lithium and sodium in diethyl ether, or with potassium in THF affords compounds featuring the direct alkali metal–gallium bonds, [(dpp‐bian)Ga? Li(Et2O)3] ( 2 ), [(dpp‐bian)Ga? Na(Et2O)3] ( 3 ), and [(dpp‐bian)Ga? K(thf)5] ( 7 ), respectively. Crystallization of 3 from DME produces compound [(dpp‐bian)Ga? Na(dme)2] ( 4 ). Dissolution of 3 in THF and subsequent crystallization from diethyl ether gives [(dpp‐bian)Ga? Na(thf)3(Et2O)] ( 5 ). Ionic [(dpp‐bian)Ga]?[Na([18]crown‐6)(thf)2]+ ( 6 a ) and [(dpp‐bian)Ga]?[Na(Ph3PO)3(thf)]+ ( 6 b ) were obtained from THF after treatment of 3 with [18]crown‐6 and Ph3PO, respectively. The reduction of 1 with Group 2 metals in THF affords [(dpp‐bian)Ga]2M(thf)n (M=Mg ( 8 ), n=3; M=Ca ( 9 ), Sr ( 10 ), n=4; M=Ba ( 11 ), n=5). The molecular structures of 4 – 7 and 11 have been determined by X‐ray crystallography. The Ga? Na bond lengths in 3 – 5 vary notably depending on the coordination environment of the sodium atom.  相似文献   

7.
Synthesis, Structure, and Properties of [nacnac]MX3 Compounds (M = Ge, Sn; X = Cl, Br, I) Reactions of [nacnac]Li [(2,6‐iPr2C6H3)NC(Me)C(H)C(Me)N(2,6‐iPr2C6H3)]Li ( 1 ) with SnX4 (X = Cl, Br, I) and GeCl4 in Et2O resulted in metallacyclic compounds with different structural moieties. In the [nacnac]SnX3 compounds (X = Cl 2 , Br 3 , I 4 ) the tin atom is five coordinated and part of a six‐membered ring. The Sn–N‐bond length of 3 is 2.163(4) Å and 2.176(5) Å of 4 . The five coordinated germanium of the [nacnac]GeCl3 compound 5 shows in addition to the three chlorine atoms further bonds to a carbon and to a nitrogen atom. In contrast to the known compounds with the [nacnac] ligand the afore mentioned reaction creates a carbon–metal‐bond (1.971(3) Å) forming a four‐membered ring. The Ge–N bond length (2.419(2) Å) indicates the formation of a weakly coordinating bond.  相似文献   

8.
Quantum chemical calculations of reaction mechanisms for the formal [2+2] addition of ethylene and acetylene to the amido‐substituted digermyne and distannyne Ph2N?EE?NPh2 (E=Ge, Sn) have been carried out by using density functional theory at the BP86/def2‐TZVPP level. The nature and bonding situations were studied with the NBO method and with the charge and energy decomposition analysis EDA‐NOCV. The addition of ethylene to Ph2N?EE?NPh2 takes place through an initial [2+1] addition to one metal atom and consecutive rearrangement to four‐membered cyclic species, which feature a weak E?E bond. Rotation about the C?C bond with concomitant rupture of the E?E bond leads to the 1,2‐disubstituted ethanes, which have terminal E(NPh2) groups. The overall reaction Ph2N?EE?NPh2+C2H4→(Ph2N)E?C2H4?E(NPh2) has very low activation barriers and is slightly exergonic for E=Ge but slightly endergonic for E=Sn. The analysis of the electronic structure shows that there is charge donation of nearly one electron to the ethylene moiety already in the first part of the reaction. The energy partitioning analysis suggests that the HOMO(Ph2N?EE?NPh2)→LUMO(C2H4) interaction has a similar strength as the HOMO(C2H4)→LUMO(Ph2N?EE?NPh2) interaction. The [2+2] addition of acetylene to Ph2N?EE?NPh2 also takes place through an initial [2+1] approach, which eventually leads to 1,2‐disubstituted olefins (Ph2N)E?C2H2?E(NPh2). The formation of the energetically lowest lying conformations of cis‐(Ph2N)E?C2H2?E(NPh2), which occurs with very low activation barriers, is clearly exergonic for the germanium and the tin compound. The trans‐coordinated isomers of (Ph2N)E?C2H2?E(NPh2) are slightly lower in energy than the cis form but they are separated by a substantial energy barrier for the rotation about the C?C bond. The energy decomposition analysis indicates that the initial reaction takes place under formation of electron‐sharing bonds between triplet fragments rather than HOMO–LUMO interactions.  相似文献   

9.
Mesoionic dithiolates [(MIDtAr)Li(LiBr)2(THF)3] (MIDtAr={SC(NDipp)}2CAr; Dipp=2,6-iPr2C6H3; Ar=Ph 3 a , 3-MeC6H4 (3-Tol) 3 b , 4-Me2NC6H4 (DMP) 3 c ) and [(MIDtPh)Li(THF)2] ( 4 ) are readily accessible (in≥90 % yields) as crystalline solids on treatments of anionic dicarbenes Li(ADCAr) ( 2 a - c ) (ADCAr={C(NDipp)2}2CAr) with elemental sulfur. 3 a - c and 4 are monoanionic ditopic ligands with both the sulfur atoms formally negatively charged, while the 1,3-imidazole unit bears a formal positive charge. Treatment of 4 with (L)GeCl2 (L=1,4-dioxane) affords the germylene (MIDtPh)GeCl ( 5 ) featuring a three-coordinated Ge atom. 5 reacts with (L)GeCl2 to give the Ge−Ge catenation product (MIDtPh)GeGeCl3 ( 6 ). KC8 reduction of 5 yields the homoleptic germylene (MIDtPh)2Ge ( 7 ). Compounds 3 a - c and 4 – 7 have been characterized by spectroscopic studies and single-crystal X-ray diffraction. The electronic structures of 4 – 7 have been analyzed by DFT calculations.  相似文献   

10.
A study of the coordination chemistry of different bis(diphenylphosphino)methanide ligands [Ph2PC(X)PPh2] (X=H, SiMe3) with Group 4 metallocenes is presented. The paramagnetic complexes [Cp2Ti{κ2P,P‐Ph2PC(X)PPh2}] (X=H ( 3 a ), X=SiMe3 ( 3 b )) have been prepared by the reactions of [(Cp2TiCl)2] with [Li{C(X)PPh2}2(thf)3]. Complex 3 b could also be synthesized by reaction of the known titanocene alkyne complex [Cp2Ti(η2‐Me3SiC2SiMe3)] with Ph2PC(H)(SiMe3)PPh2 ( 2 b ). The heterometallacyclic complex [Cp2Zr(H){κ2P,P‐Ph2PC(H)PPh2}] ( 4 aH ) has been prepared by reaction of the Schwartz reagent with [Li{C(H)PPh2}2(thf)3]. Reactions of [Cp2HfCl2] with [Li{C(X)PPh2}2(thf)3] gave the highly strained corresponding metallacycles [Cp2M(Cl){κ2P,P‐Ph2PC(X)PPh2}] ( 5 aCl and 5 bCl ) in very good yields. Complexes 3 a , 4 aH , and 5 aCl have been characterized by X‐ray crystallography. Complex 3 a has also been characterized by EPR spectroscopy. The structure and bonding of the complexes has been investigated by DFT analysis. Reactions of complexes 4 aH , 5 aCl , and 5 bCl did not give the corresponding more unsaturated heterometallacyclobuta‐2,3‐dienes.  相似文献   

11.
The reaction of MCl4(thf)2 (M = Zr, Hf) with 1,4-dilitiobutane in diethyl ether at –25 °C or at 0 °C with a molar ratio of 1 : 3 yields the homoleptic “ate” complexes [(thf)4Li] [{(thf)Li}M(C4H8)3] 1 - Zr (M = Zr) and 1 - Hf (M = Hf). The crystalline compounds form ion lattices with solvent-separated [(thf)4Li]+ cations and [{(thf)Li}M(C4H8)3] anions. The NMR spectra at –20 °C show magnetic equivalence of the M–CH2 and of the β-CH2 groups of the butane-1,4-diide ligands on the NMR time scale. Analogous reactions of MCl4(thf)2 with 1,4-dilithiobutane with a molar ratio of 1 : 2 proceed unclear. However, single crystals of [Li(thf)4] [HfCl5(thf)] ( 2 ) can be isolated with the hafnium atom in a distorted octahedral coordination sphere of five chloro and one thf ligand. NMR spectra allow to elucidate the time-dependent degradation of 1-Hf and 1-Zr in THF and toluene at 25 °C via THF cleavage. Addition of tmeda to a solution of 1-Zr allows the isolation of intermediately formed [{(tmeda)Li}2Zr(nBu)2(C4H8)2] ( 3 ).  相似文献   

12.
Cyclic bis(amido)tin(II) compounds 1,2- [R = SiMe3] ( 4 ), SiMe2But ( 5 ) and CH2But ( 6 )], as well as ( 4 )2(μ-tmeda) 7 have been obtained either from (i) the corresponding dilithium compound 1,2-C6H4[N(R)Li]2 1–3 and SnCl2 for 4–6 , respectively, (or for 4 ) 2 1 + [Sn(μ-Cl){N(SiMe3)2}]2; or (ii) 1,2-C6H4[N(H)R]2 + Sn[N(SiMe3)2]2 for 4–6 ; or for 7 from 4 and tmeda. Compounds 4–6 are monomeric, yellow, thermochromic (becoming redder on heating), diamagnetic, crystalline and are lipophilic and sublimable in vacuo. Compound 7 is colourless. The molecular structures of 6 and 7 have been determined from single crystal X-ray diffraction data. Compound 6 crystallises in bimolecular aggregates, in which there is a weak η-C6 … Sn contact.  相似文献   

13.
The first homoleptic cobalt phosphanido complex [K(thf)4][Co{1,2‐(Pt Bu2)2C2B10H12}2] ( 1 ) was prepared by an unprecedented oxidative P−P bond addition of an ortho ‐carborane‐substituted 1,2‐diphosphetane to cobalt(−I) in [K(thf)0.2][Co(η4‐cod)2)] (cod=1,5‐cycloctadiene). Compound 1 is a rare distorted tetrahedral 3d6 complex with a low‐spin ground state configuration. Magnetic measurements revealed that the complex is diamagnetic between 2 to 270 K in the solid state and at 298 K in [D8]THF solution. Based on DFT calculations, the unusual singlet ground state is caused by the strong σ‐donor and moderate π‐donor properties of the bis(phosphanido) ligand.  相似文献   

14.
Synthesis and Crystal Structure of [Li(thf)4]2[Bi4I14(thf)2], [Li(thf)4]4[Bi5I19], and (Ph4P)4[Bi6I22] Solutions of BiI3 in THF or methanol react with MI (M = Li, Na) to form polynuclear iodo complexes of bismuth. The syntheses and results of X-ray structure analyses of compounds [Li(thf)4]2[Bi4I14(thf)2], [Li(thf)4]4[Bi5I19], [Na(thf)6]4[Bi6I22] and (Ph4P)4[Bi6I22] are described. The anions of these compounds consist of edge-sharing BiI6 and BiI5(thf) octahedra. The Bi atoms lie in a plane and are coordinated by bridging and terminal I atoms and by THF ligands in a distorted octahedral fashion. [Li(thf)4]2[Bi4I14(thf)2]: Space group P1 (No. 2), a = 1 159.9(6), b = 1 364.6(7), c = 1 426.5(7) pm, α = 114.05(3), β = 90.01(3), γ = 100.62(3)°. [Li(thf)4]4[Bi5I19]: Space group P21/n (No. 14), a = 1 653.0(9), b = 4 350(4), c = 1 836.3(13) pm, β = 114.70(4)°. [Na(thf)6]4[Bi6I22]: Space group P21/n (No. 14), a = 1 636.4(3), b = 2 926.7(7), c = 1 845.8(4) pm, β = 111.42(2)°. (Ph4P)4[Bi6I22]: Space group P1 (No. 2), a = 1 368.6(7), b = 1 508.1(9), c = 1 684.9(8) pm, α = 98.28(4), β = 95.13(4), γ = 109.48(4)°.  相似文献   

15.
The complex cis-Pt(Ph3Ge)2(PMe2Ph)2 underwent smooth isomerization to give the trans-isomer at room temperature via an associative five-coordinated intermediate. Thermodynamic parameters and activation energy for the cis to trans isomerization were obtained, ΔH# = 105 kJ mol−1, ΔS# = 12.5 J mol−1 K−1, and Ea = 107 kJ mol−1, respectively. Heating of trans-Pt(Ph3Ge)2(PMe2Ph)2 at 50 °C for 36 days produced trans-PtPh(Ph3Ge)(PMe2Ph)2 followed by the formation of trans-PtPh2(PMe2Ph)2, Pt(PMe2Ph)4, and Ph4Ge finally via elimination of the phenyl group from Ph3Ge ligand with liberation of the Ph2Ge unit and subsequent reductive elimination of the remaining Ph3Ge ligand at 80 °C for 1 month.  相似文献   

16.
The tetravalent germanium and tin compounds of the general formulae Ph*EX3 (Ph* = C6H3Trip‐2,6, Trip = C6H2iPr3‐2,4,6; E = Sn, X = Cl ( 1a ), Br ( 1b ); E = Ge, X = Cl ( 2 )) are synthesized by reaction of Ph*Li·OEt2 with EX4. The subsequent reaction of 1a , b with LiP(SiMe3)2 leads to Ph*EP(SiMe3)2 (E = Sn ( 3 ), Ge ( 4 )) and the diphosphane (Me3Si)2PP(SiMe3)2 by a redox reaction. In an alternative approach 3 and 4 are synthesized by using the corresponding divalent compounds Ph*ECl (E = Ge, Sn) in the reaction with LiP(SiMe3)2. The reactivity of Ph*SnCl is extensively investigated to give with LiP(H)Trip a tin(II)‐phosphane derivative Ph*SnP(H)Trip ( 6 ) and with Li2PTrip a proposed product [Ph*SnPTrip] ( 7 ) with multiple bonding between tin and phosphorus. The latter feature is confirmed by DFT calculations on a model compound [PhSnPPh]. The reaction with Li[H2PW(CO)5] gives the oxo‐bridged tin compound [Ph*Sn{W(CO)5}(μ‐O)2SnPh*] ( 8 ) as the only isolable product. However, the existence of 8 as the bis‐hydroxo derivative [Ph*Sn{W(CO)5}(μ‐OH)2SnPh*] ( 8a ) is also possible. The SnIV derivatives Ph*Sn(OSiMe3)2Cl ( 9 ) and [Ph*Sn(μ‐O)Cl]2 ( 10 ) are obtained by the oxidation of Ph*SnCl with bis(trimethylsilyl)peroxide and with Me3NO, respectively. Besides the spectroscopic characterization of the isolated products compounds 1a , 2 , 3 , 4 , 8 , and 10 are additionally characterized by X‐ray diffraction analysis.  相似文献   

17.
Bis(1,2‐diselenosquarato) Metalates A series of 1,2‐diselenosquarato metalates [M(dssq)2]2– (M = Pd2+, Pt2+, Cu2+, Ni2+, Zn2+, Cd2+, Pb2+, VO2+) was available by direct synthesis from the appropriate metal salt with dipotassium 1,2‐diselenosquarate in deoxygenized water under an argon athmosphere. The copper(II)complex, [Cu(dssq)2]2–, and the oxovanadium(IV)complex, [VO(dssq)2]2–, were identified in solution by EPR spectroscopy (parameters: [Cu(dssq)2]2–: g0 = 2.073; a = –76.0 · 10–4 cm–1, a = 47.0 · 10–4 cm–1; [VO(dssq)2]2–: g0 = 1.986; a = 74.9 · 10–4 cm–1). The complexes bis(tetraphenylphosphonium)[bis(1,2‐diselenosquarato)nickelate(II)], (Ph4P)2[Ni(dssq)2], and bis(tetraphenylphosphonium)[bis(1,2‐diselenosquarato)zincate(II)], (Ph4P)2[Zn(dssq)2], were characterized by X‐ray structure analysis. The square‐planar NiII complex (Ph4P)2[Ni(dssq)2] crystallizes in the monoclinic spacegroup P21/n with the unit cell parameters a = 11.1472(8) Å, b = 15.331(1) Å, c = 14.783(1) Å, β = 94.441(1)° and Z = 2. The ZnII‐complex (Ph4P)2[Zn(dssq)2] is tetrahedral coordinated and crystallizes in the monoclinic spacegroup P21/c with the unit cell parameters a = 9.4238(1) Å, b = 18.5823(3) Å, c = 29.5309(5) Å, β = 96.763(1)° and Z = 4.  相似文献   

18.
Trimethylamine‐bis(trifluoromethyl)boranes R(CF3)2B · NMe3 (R = cis/trans‐CF3CF=CF ( 1/2 ), HC≡C ( 3 ), H2C=CH ( 4 ), C2H5 ( 5 ), C6H5CH2 ( 6 ), C6F5 ( 7 ), C6H5 ( 8 )) react with NEt3 × 3 HF depending on the nature of R at 155–200 °C under replacement of the trimethylamine ligand to form the corresponding fluoro‐bis(trifluoromethyl)borates [R(CF3)2BF] ( 1 a/2 a – 8 a ). The structures of 7 , K[C6H5CH2(CF3)2BF] ( K‐6 a ), and K[C6H5(CF3)2BF] ( K‐8 a ) have been investigated by single‐crystal X‐ray diffraction. In 7 the CF3 groups make short repulsive contacts with NMe3 and C6F5 entities – the B–CF3 bonds being unusually long. The B–F bond lengths of K‐6 a and K‐8 a (1.446(3) and 1.452(2) Å, respectively) are long for a fluoroborate.  相似文献   

19.
Reaction of the secocubane [Sn32‐NHtBu)22‐NtBu)(μ3‐NtBu)] ( 1 ) with dibutylmagnesium produces the heterobimetallic cubane [Sn3Mg(μ3‐NtBu)4] ( 4 ) which forms the monochalcogenide complexes of general formula [ESn3Mg(μ3‐NtBu)4] ( 5 a , E=Se; 5 b , E=Te) upon reaction with elemental chalcogens in THF. By contrast, the reaction of the anionic lithiated cubane [Sn3Li(μ3‐NtBu)4]? with the appropriate quantity of selenium or tellurium leads to the sequential chalcogenation of each of the three SnII centres. Pure samples of the mono‐ or dichalcogenides are, however, best obtained by stoichiometric redistribution reactions of [Sn3Li(μ3‐NtBu)4]? and the trichalcogenides [E3Sn3Li(μ3‐NtBu)4]? (E=Se, Te). These reactions are conveniently monitored by using 119Sn NMR spectroscopy. The anion [Sn3Li(μ3‐NtBu)4]? also acts as an effective chalcogen‐transfer reagent in reactions of selenium with the neutral cubane [{Snμ3‐N(dipp)}4] ( 8 ) (dipp=2,6‐diisopropylphenyl) to give the dimer [(thf)Sn{μ‐N(dipp)}2Sn(μ‐Se)2Sn{μ‐N(dipp)}2Sn(thf)] ( 9 ), a transformation that results in cleavage of the Sn4N4 cubane into four‐membered Sn2N2 rings. The X‐ray structures of 4 , 5 a , 5 b , [Sn3Li(thf)(μ3‐NtBu)43‐Se)(μ2‐Li)(thf)]2 ( 6 a ), [TeSn3Li(μ3‐NtBu)4][Li(thf)4] ( 6 b ), [Te2Sn3Li(μ3‐NtBu)4][Li([12]crown‐4)2] ( 7 b′′ ) and 9 are presented. The fluxional behaviour of cubic imidotin chalcogenides and the correlation between NMR coupling constants and tin–chalcogen bond lengths are also discussed.  相似文献   

20.
Metal π Complexes of Benzene Derivatives. 53 [1] Tin in the Periphery of Bis(arene)metal Complexes of Vanadium and Chromium By means of metal‐atom ligand‐vapor cocondensation as well as via wet chemical methods (lithiation and follow‐up reaction) the first organostannyl substituted bis(arene)metal complexes (R3Sn‐η6‐C6H5)2M have been prepared: 15 (R = Me, M = V), 16 (R = Ph, M = V), 13 (R = Me, M = V), 17 (R = Ph, M = Cr). Despite the bulkiness of the Ph3Sn groups the geometry of the central sandwich unit in 17 deviates only marginally from that of the parent complex (C6H6)2Cr ( 2 ). The triclinic unit cell of 17 (space group: P1; a = 9.414(4), b = 9.877(5), c = 11.012(13) Å; α = 83.51(7), β = 87.95(7), γ = 72.67(4)°) contains one independent molecule. Perturbation of the electronic structure of the bis(arene)metal unit by organostannyl groups appears to be minute because EPR spectra of the M(d5) species fail to reveal deviations from axial symmetry. The potentials for reversible oxidation of the Me3Sn‐substituted complexes 13 and 15 differ insignificantly (anodic shifts ≤ 20 mV) from those of the parent species 1 and 2 ; reductions are irreversible in both cases. More sizeable anodic shifts are observed for the Ph3Sn‐derivatives 16 and 17 ; here as well, only the redox pairs 0/+ are reversible. The resistance of the neutral complexes to protic media contrasts to ready hydrodestannylation of the complex cations. By way of metal exchange, employing n‐butyl lithium, 13 affords (Li‐η6‐C6H5)2Cr strictly 1,1′‐disubstituted and devoid of auxiliary base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号