首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
N-Carbazolylacetylene (CzA) was polymerized in the presence of various transition metal catalysts including WCl6, MoCl5, [Rh(NBD)Cl]2, and Fe(acac)3 to give polymers in good yields. The polymers produced with W catalysts were dark purple solids and soluble in organic solvents such as toluene, chloroform, etc. The highest weight-average molecular weight of poly(CzA) reached about 4 × 104. In the UV–visible spectrum in CHCl3, poly(CzA) exhibited an absorption maximum around 550 nm (εmax = 4.0 × 103 M−1 cm−1) and the cutoff wavelength was 740 nm, showing a large red shift compared with that of poly(phenylacetylene) [poly(PA)]. Poly(CzA) began to lose weight in TGA under air at 310°C, being thermally more stable than poly(PA) and poly[3-(N-carbazolyl)-1-propyne]. Poly(CzA) showed a third-order susceptibility of 18 × 10−12 esu, which was 2 orders larger than that of poly(PA). © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2489–2492, 1998  相似文献   

2.
Gas barrier properties of alkylsulfonylmethyl-substituted poly(oxyalkylene)s are discussed. Oxygen permeability coefficients of three methylsulfonylmethyl-substituted poly(oxyalkylene)s, poly[oxy(methylsulfonylmethyl)ethylene] (MSE), poly[oxy(methylsulfonylmethyl)ethylene-co-oxyethylene] (MSEE), and poly[oxy-2,2-bis (methylsulfonylmethyl)trimethylene oxide] (MST) were measured. MSEE, which has the most flexible backbone of the three polymers, had an oxygen permeability coefficient at 30°C of 0.0036 × 10−13 cm3(STP)·cm/cm2·s·Pa higher than that of MSE, 0.0014 × 10−13 cm3(STP)·cm/cm2·s·Pa, because the former polymer's Tg was near room temperature. MST with two polar groups per repeat unit and the highest Tg showed the highest oxygen permeability, 0.013 × 10−13 cm3(STP) · cm/cm2·s·Pa, among the three polymers, probably because steric hindrance between the side chains made the chain packing inefficient. As the side chain length of poly[oxy(alkylsulfonylmethyl)ethylene] increased, Tg and density decreased and the oxygen permeability coefficients increased. The oxygen permeability coefficient of MSE at high humidity (84% relative humidity) was seven times higher than when it was dry because absorbed water lowered its Tg. At 100% relative humidity MSE equilibrated to a Tg of 15°C after 2 weeks. A 50/50 blend of MSE/MST had oxygen barrier properties better than the individual polymers (O2 permeability coefficient is 0.0007 × 10−13 cm3(STP)·cm/cm2 ·s·Pa), lower than most commercial high barrier polymers. At 100% relative humidity, it equilibrated to a Tg of 42°C, well above room temperature. These are polymer systems with high gas barrier properties under both dry and wet conditions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 75–83, 1998  相似文献   

3.
Summary: A diastereomeric pair of novel N‐propargylphosphonamidates, HCCCH2NHP(O)(CH3)O‐L ‐menthyl was synthesized by the successive condensations of methylphosphonic dichloride with L ‐menthol and propargylamine. The (R)‐P‐isomer ( 1a ) was isolated, and the absolute configuration was determined by XRD. Polymerization of 1a , and a mixture of 1a and (S)‐P‐isomer ( 1b ) was carried out with a zwitterionic Rh complex as a catalyst. cis‐Stereoregular polymers with number‐average molecular weights of 5 600–9 800 were obtained in good yields. Poly( 1a ) and poly( 1a 29co‐ 1b 71) exhibited large specific rotations (+408 and −146°), and intense Cotton effects ([θ] = +2.25 and −0.9 × 104 deg · cm2 · dmol−1) based on the conjugated polyacetylene backbone around 325 nm in CHCl3, indicating that these polymers have helical structures, whose predominant helical senses are opposite.

Polymerization of N‐propargylphosphonamidate.  相似文献   


4.
The temperature‐dependent desorption behavior of surfactants in linear low‐density polyethylene (LLDPE) blend films was studied with Fourier transform infrared spectroscopy at 25, 40, and 50 °C. The LLDPE/low‐density polyethylene blend was 70/30. Three different specimens (labeled II, III, and IV) were prepared with various compositions of the surfactant, sorbitan palmitate (SPAN‐40), and the migration controller, poly(ethylene acrylic acid) (EAA). The calculated diffusion coefficients of SPAN‐40 in specimens II, III, and IV at 25, 40, and 50 °C varied from 9.6 × 10−12 to 17.4 × 10−12 cm2/s, from 5.5 × 10−12 to 11.0 × 10−12 cm2/s, and from 3.1 × 10−12 to 5.8 × 10−12 cm2/s, respectively. In addition, the activation energies of specimens II, III, and IV measured between 25 and 50 °C were 18.74, 19.42, and 20.14, respectively. Hence, the desorption rate of the surfactant increased with the temperature and decreased with an addition of EAA, but the activation energy increased with EAA. The diffusion kinetics, analyzed with a plot of the integrated intensity ratio as a function of time, log(It/I) versus log t, at 25, 40, and 50 °C obeyed Fickian diffusion behavior. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 218–227, 2001  相似文献   

5.
The metathesis polymerization of an anthrylacetylene bearing an alkyl ester group, 9‐(10‐hexoxycarbonyl)anthrylacetylene ( 1 ), was conducted with various transition‐metal catalysts. A completely soluble black polymer was obtained from 1 in a good yield when W‐based catalysts were employed. The polymerization at a high monomer concentration (1 M) and a high temperature (80 °C) led to the formation of poly( 1 ) with a weight‐average molecular weight of 297 × 103 in an 80% yield. The use of cocatalysts unexpectedly decreased both the yield and molecular weight of poly( 1 ). Rh‐catalyzed and Mo‐catalyzed polymerizations, however, resulted in poor yields of the polymer. The ultraviolet–visible spectrum of poly( 1 ) showed a significantly redshifted absorption (λmax = 571) with a cutoff at 780 nm, which verified the very high order of conjugation of the main chain. Poly( 1 ) exhibited the largest third‐order nonlinear optical susceptibility [χ(3) (−ω; ω, 0, 0) = − 1.9 × 10−10 esu] among the polymers from the monosubstituted polyacetylenes synthesized so far. The electrical conductivity of poly( 1 ) in an I2‐doped state was 8.77 × 10−4 at 293 K. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4717–4723, 2000  相似文献   

6.
Novel nonlinear optical (NLO) chromophore, 2-{3-[2-(4-methylsulfonylphenyl)vinyl]carbazol-9-yl}ethanol was synthesized and subsequently reacted with methacryloyl chloride to give a photoconducting NLO monomer ( M1 ). 2-Methylacrylic acid 2-[3-(diphenylhydrazonomethyl)carbazol-9-yl]ethyl ester ( M2 ) was also synthesized as a comonomer to enhance the carrier mobility of the NLO polymer. Photoconducting NLO polymers, P1 and P2 were obtained by the copolymerization of Ml with methyl methacrylate and M2 , respectively. These polymers were well soluble in organic solvents and showed glass transition at 177 °C and 196 °C, respectively. Polymer films of P1 and P2 were optically clear, and were transparent at wavelengths longer than 420 nm. The electro-optic coefficient (r33) of poled P1 films was measured to be ∼5 pm/V at 632.8 nm. The photoconductive sensitivities of P1 and P2 were 6.2 × 10−14 S·cm−1/mW·cm−2 and 5.6 × 10−11 S·cm−1/mW·cm−2.  相似文献   

7.
A novel sulfonated diamine, 4,4′‐bis(4‐amino‐3‐trifluoromethylphenoxy) biphenyl 3,3′‐disulfonic acid (F‐BAPBDS), was successfully synthesized by nucleophilic aromatic substitution of 4,4′‐dihydroxybiphenyl with 2‐chloro‐5‐nitrobenzotrifluoride, followed by reduction and sulfonation. A series of sulfonated polyimides of high molecular weight (SPI‐x, x represents the molar percentage of the sulfonated monomer) were prepared by copolymerization of 1,4,5,8‐naphathlenetetracarboxylic dianhydride (NTDA) with F‐BAPBDS and nonsulfonated diamine. Flexible and tough membranes of high mechanical strength were obtained by solution casting and the electrolyte properties of the polymers were intensively investigated. The copolymer membranes exhibited excellent oxidative stability due to the introducing of the CF3 groups. The SPI membranes displayed desirable proton conductivity (0.52×10−1–0.97×10−1 S·cm−1) and low methanol permeability (less than 2.8×10−7 cm2·s−1). The highest proton conductivity (1.89×10−1 S·cm−1) was obtained for the SPI‐90 membrane at 80°C, with an IEC of 2.12 mequiv/g. This value is higher than that of Nafion 117 (1.7×10−1 S·cm−1). Furthermore, the hydrolytic stability of the obtained SPIs is better than the BDSA and ODADS based SPIs due to the hydrophobic CF3 groups which protect the imide ring from being attacked by water molecules, in spite of its strong electron‐withdrawing behaviors.  相似文献   

8.
Multiarm star‐branched polymers based on poly(styrene‐b‐isobutylene) (PS‐PIB) block copolymer arms were synthesized under controlled/living cationic polymerization conditions using the 2‐chloro‐2‐propylbenzene (CCl)/TiCl4/pyridine (Py) initiating system and divinylbenzene (DVB) as gel‐core‐forming comonomer. To optimize the timing of isobutylene (IB) addition to living PS⊕, the kinetics of styrene (St) polymerization at −80°C were measured in both 60 : 40 (v : v) methyl cyclohexane (MCHx) : MeCl and 60 : 40 hexane : MeCl cosolvents. For either cosolvent system, it was found that the polymerizations followed first‐order kinetics with respect to the monomer and the number of actively growing chains remained invariant. The rate of polymerization was slower in MCHx : MeCl (kapp = 2.5 × 10−3 s−1) compared with hexane : MeCl (kapp = 5.6 × 10−3 s−1) ([CCl]o = [TiCl4]/15 = 3.64 × 10−3M; [Py] = 4 × 10−3M; [St]o = 0.35M). Intermolecular alkylation reactions were observed at [St]o = 0.93M but could be suppressed by avoiding very high St conversion and by setting [St]o ≤ 0.35M. For St polymerization, kapp = 1.1 × 10−3 s−1 ([CCl]o = [TiCl4]/15 = 1.82 × 10−3M; [Py] = 4 × 10−3M; [St]o = 0.35M); this was significantly higher than that observed for IB polymerization (kapp = 3.0 × 10−4 s−1; [CCl]o = [Py] = [TiCl4]/15 = 1.86 × 10−3M; [IB]o = 1.0M). Blocking efficiencies were higher in hexane : MeCl compared with MCHx : MeCl cosolvent system. Star formation was faster with PS‐PIB arms compared with PIB homopolymer arms under similar conditions. Using [DVB] = 5.6 × 10−2M = 10 times chain end concentration, 92% of PS‐PIB arms (Mn,PS = 2600 and Mn,PIB = 13,400 g/mol) were linked within 1 h at −80°C with negligible star–star coupling. It was difficult to achieve complete linking of all the arms prior to the onset of star–star coupling. Apparently, the presence of the St block allows the PS‐PIB block copolymer arms to be incorporated into growing star polymers by an additional mechanism, namely, electrophilic aromatic substitution (EAS), which leads to increased rates of star formation and greater tendency toward star–star coupling. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1629–1641, 1999  相似文献   

9.
A novel imidazolium‐containing monomer, 1‐[ω‐methacryloyloxydecyl]‐3‐(n‐butyl)‐imidazolium (1BDIMA), was synthesized and polymerized using free radical and controlled free radical polymerization followed by post‐polymerization ion exchange with bromide (Br), tetrafluoroborate (BF4), hexafluorophosphate (PF6), or bis(trifluoromethylsulfonyl)imide (Tf2N). The thermal properties and ionic conductivity of the polymers showed a strong dependence on the counter‐ions and had glass transition temperatures (Tg) and ion conductivities at room temperature ranging from 10 °C to −42 °C and 2.09 × 10−7 S cm−1 to 2.45 × 10−5 S cm−1. In particular, PILs with Tf2N counter‐ions showed excellent ion conductivity of 2.45 × 10−5 S cm−1 at room temperature without additional ionic liquids (ILs) being added to the system, making them suitable for further study as electro‐responsive materials. In addition to the counter‐ions, solvent was found to have a significant effect on the reversible addition‐fragmentation chain‐transfer polymerization (RAFT) for 1BDIMA with different counter‐ions. For example, 1BDIMATf2N would not polymerize in acetonitrile (MeCN) at 65 °C and only achieved low monomer conversion (< 5%) at 75 °C. However, 1BDIMA‐Tf2N proceeded to high conversion in dimethylformamide (DMF) at 65 °C and 1BDIMABr polymerized significantly faster in DMF compared to MeCN. NMR diffusometry was used to investigate the kinetic differences by probing the diffusion coefficients for each monomer and counter‐ion in MeCN and DMF. These results indicate that the reaction rates are not diffusion limited, and point to a need for deeper understanding of the role electrostatics plays in the kinetics of free radical polymerizations. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1346–1357  相似文献   

10.
Dense ceramics (Li4+xSi1−xAlxO4 with 0 ≤ x ≤ 0.3) are obtained by sintering at 700–900°C, without prior calcination, of sol-gel powders prepared by an alkoxide-hydroxide route. In comparison with the pure lithium orthosilicate (3 × 10−4 S · cm−1 at 350°C), only a slight enhancement of the ionic conductivity is noted for monophase ceramics with Li4SiO4-type structure (5 × 10−4 S · cm−1 at 350°C for x = 0.3). Higher conductivity (2 × 10−2 S · cm−1 at 350°C) is observed for an heterogeneous material formed of a lithium silicoaluminate phase (x = 0.2) with the Li4SiO4-type structure coexisting with lithium hydroxide. In this two-phase material, ac conductivity and 7Li spin-lattice relaxation data are consistent with the formation of a new kinetic path, via a thin layer along the interface, which enhances the lithium mobility.  相似文献   

11.
This study prepared a dense Sm‐doped ceria (SDC) and an SDC carbonate composite (abbreviated as SDC‐C). The latter was prepared by immersing porous SDC with a formula of (Ce0.8Sm0.2)O1.9 and a relative density of approximately 65‐70% into a molten mixture of carbonates containing 1:1 molar ratio of Li2CO3 and Na2CO3 at 500 °C. The relative density of the SDC‐C was close to 100%. In addition, SDC oxide without carbonates, which also has a relative density of close to 100%, was heat treated at 1600 °C. At 500 °C, the electrical conductivity and ionic transference number (ti) of the SDC oxide were 1.79(5) × 10?3 S·cm?1 and 0.99(2), respectively, such that electronic conduction could be disregarded. Increasing the temperature caused a gradual decrease in the ti of SDC. Following the addition of carbonates to SDC, the electrical conductivity reached 1.23(9) × 10?1 S·cm?1 at 500 °C. After 14 days (340 h), the electrical conductivity of the SDC‐C at 490 °C, leveled off at about 6 × 10?2 S·cm?1. SDC‐C could be used as a potential electrolyte in solid oxide fuel cells (SOFCs) at temperatures below 500 °C.  相似文献   

12.
Three disubstituted acetylenes with an adamantyl group—1-(p-adamantylphenyl)-2-chloroacetylene (ClpAdPA), 1-(p-adamantylphenyl)-1-propyne (pAdPP), and 1-(p-adamantylphenyl)-2-phenylacetylene (pAdDPA)—polymerized in good yields in the presence of MoCl5- or TaCl5-based catalysts. The highest weight-average molecular weights of poly(ClpAdPA), poly(pAdPP), and poly(pAdDPA) reached 3.6 × 105, 1.1 × 106, and 6.0 × 106, respectively. The polymers were yellow to white solids and completely soluble in toluene, chloroform, and so forth. These polymers thermally were fairly stable, and the onset temperatures of weight loss in air were over 360 °C. Poly(pAdPP) and poly(pAdDPA) provided free-standing films by solution casting, and their oxygen permeability coefficients (PO2) at 25 °C were 8.6 and 55 barrers [1 barrer = 1 × 10−10 cm3 · (STP) · cm/(cm2 · s · cm Hg)], respectively, which are relatively small compared to those of other substituted polyacetylenes. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4546–4553, 1999  相似文献   

13.
This work reports development of yttrium doped copper oxide (Y−CuO) as a new hole transport material with supplemented optoelectronic character. The pure and Y-doped CuO thin films are developed through a solid-state method at 200 °C and recognized as high performance p-channel inorganic thin-film transistors (TFTs). CuO is formed by oxidative decomposition of copper acetylacetonate, yielding 100 nm thick and conductive (40.9 S cm−1) compact films with a band gap of 2.47 eV and charge carrier density of ∼1.44×1019 cm−3. Yttrium doping generates denser films, Cu2Y2O5 phase in the lattice, with a wide band gap of 2.63 eV. The electrical conductivity increases nine-fold on 2 % Y addition to CuO, and the carrier density increases to 2.97×1021 cm−3, the highest reported so far. The TFT devices perform remarkably with high field-effect mobility (μsat) of 3.45 cm2 V−1 s−1 and 5.3 cm2 V−1 s−1, and considerably high current-on/off ratios of 0.11×104 and 9.21×104, for CuO and Y−CuO films, respectively (at −1 V operating voltage). A very small width hysteresis, 0.01 V for CuO and 1.92 V for 1 % Y−CuO, depict good bias stability. Both the devices work in enhancement mode with stable output characteristics for multiple forward sweeps (5 to −60 V) at −1Vg.  相似文献   

14.
A novel [60]fullerene pearl-necklace polymer, poly(4,4′-carbonylbisphenylene trans-2-[60]fullerenobisacetamide), was synthesized by a direct polycondensation of trans-2-[60]fullerenobisacetic acid with 4,4′-diaminobenzophenone in the presence of large excesses of triphenyl phosphite and pyridine. In the present polymer, [60]fullerene pearls and diamine linkers were attached to each other by methano-carbonyl connectors. The molecular weight Mw of the polymer was determined to be 4.5 × 104 on the basis of the TOF-MS, and a GPC analysis of the polymer using polystyrene standards showed a weight-average molecular weight of 5.3 × 104. The UV-vis spectrum of the resultant polymer in N,N-dimethylacetamide (DMAc) exhibited a broad absorption (λmax 310 nm, ε 2.1 × 104 L · mol−1 · cm−1), tailing to longer wavelengths, and a fluorenscence peak centered at 550 nm was observed in DMAc. There was observed a large downfield-shift of the cyclopropane methyne proton in the 1H-NMR spectra from 4.57 ppm of the ethyl ester to 5.78 ppm of the polyamide. These observations indicate that the present polyamide is a high-molecular-weight [60]fullerene pearl-necklace polymer and that the cyclopropane rings are efficient to make the [60]fullerene cages and the diamine components conjugatable. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3632–3637, 1999  相似文献   

15.
Chain‐length‐dependent termination rate coefficients of the bulk free‐radical polymerization of styrene at 80 °C are determined by combining online polymerization rate measurements (DSC) with living RAFT polymerizations. Full kt versus chain‐length plots were obtained indicating a high kt value for short chains (2 × 109 L · mol−1 · s−1) and a weak chain‐length dependence between 10 and 100 monomer units, quantified by an exponent of −0.14 in the corresponding power law 〈kti,i〉 = kt0 · P−b.

Double logarithmic plots of 〈kti,i〉 versus P, evaluated from experimental time‐resolved Rp data according to the procedure described in the text, for different CPDA and AIBN concentrations. The best linear fit for (10 < P < 100) is indicated as full line.  相似文献   


16.
Summary: Anthracene sulfonic acid doped polyaniline nanomaterials were prepared through the chemical oxidative polymerisation process. Ammonium peroxydisulfate (APS) was employed as oxidant. Scanning electron microscopy (SEM) results show the resultant polyaniline (PANi) materials exhibited nanofibrillar morphology with diameter sizes less than 300 nm. Using the nanofibrillar PANI, amperometric biosensors for H2O2 and erythromycin were constructed through the drop-coating technique. Anthracene sulfonic acid (ASA) doped PANi and the test enzymes horseradish peroxidase, (HRP), or cytochrome P450 3A4, (CYP4503A4) were mixed in phosphate buffer solution before drop coating onto the electrode. The resultant biosensors displayed typical Michaelis-Menten behaviour. The apparent Michaelis-Menten constant obtained was 0.18 ± 0.01 mM and 0.80 ± 0.02 µM L−1 for the peroxide and erythromycin biosensor respectively. The sensitivity for the peroxide sensor was 3.3 × 10−3 A · cm−2 · mM−1, and the detection limit was found to be 1.2 × 10−2 mM respectively. Similarly, the sensitivity for the erythromycin sensor was in the same order at 1.57 × 10−3 A · cm−2 · mM−1 and detection limit was found to be 7.58 × 10−2 µM.  相似文献   

17.
Triplet‐triplet extinction coefficients for astaxanthin ( I ) and canthaxanthin ( II ) in different deaerated polarity solutions of MeCN and benzene were evaluated by laser flash photolysis at 298 K in the spectral region from 350 to 650 nm by energy transfer method, employing 2‐acetonaphthone as sensitizer. The triplet‐triplet extinction coefficients in MeCN and benzene were different in terms of the carotenoid present. The maximum triplet‐triplet extinction coefficient was 0.1–1.7×105 L·mol−1·cm−1 in different solvents. The rate constants of triplet decay were I : 1.25×1010 L·mol−1·s−1, II : 1.12×1010 L·mol−1·s−1 in MeCN; and I : 1.75×1010 L·mol−1·cm−1, II : 3.27×1010 L·mol−1·s−1 in benzene. The bimolecular rate constants of energy transfer from triplet excited 2‐acetonaphthone to carotenoids were determined from the linear regression of the decay rate constant of 2‐acetonaphthone triplet at varying carotenoid concentrations. The triplet lifetimes of 3AST* and 3CAN* in different solvents were also determined. The results indicated that triplet energy transfer was nearly diffusion‐controlled.  相似文献   

18.
Block and random copolymers of poly(3‐hexylthiophene) and poly[3‐(2‐(6‐carboxyhexyl)methyl)thiophene] with side‐chain carboxylic functionality ((P3HT‐b‐P3COOH) and (P3HT‐r‐P3COOH) were developed by Grignard Metathesis (GRIM) polymerization. The carboxylic functionality was introduced in the side chain via the oxazoline route. Both the block and random polythiophene copolymers were complexed with pyridine functionalized perylene bisimide to obtain supramolecular block and random polymer complexes. The complex formation in both systems was confirmed by 1H NMR, WXRD and SAXS studies. An expansion of d spacing upon complex formation was observed in both the block and random copolymer, which could be traced by WXRD. Hole and electron mobilities measured for the supramolecular complexes indicated values which were higher by an order of magnitude for the supramolecular block complex (μh ≈ 2.9 × 10−4 cm2/Vs; μe ≈ 3.1 × 10−6 cm2/Vs) as compared to the random (μh ≈ 1.4 × 10−5 cm2/Vs; μe ≈ 4.7 × 10−7 cm2/Vs) copolymer. These results are indicative of the higher degree of disorder prevailing in the films of random copolymer system compared to the block copolymer. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1574–1583  相似文献   

19.
Eight 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride‐4,4′‐diamino‐3,3′‐dimethylbiphenyl (6FDA‐OTOL) fractions and seven 2,2′‐bis[4‐(3,4‐dicarboxyphenoxy) phenyl] propane dianhydride‐4,4′‐diamino‐3,3′‐dimethylbiphenyl (BISADA‐OTOL) fractions in cyclopentanone at 30 °C were characterized by a combination of viscometry and static and dynamic laser light scattering (LLS). In static LLS, the angular dependence of the absolute scattered intensity led to the weight‐average molar mass (Mw), the z‐average root mean square radius of gyration, and the second virial coefficient. In dynamic LLS, the Laplace inversion of each measured intensity–intensity time correlation function resulted in a corresponding translational diffusion coefficient distribution [G(D)]. The scalings of 〈D〉 (cm2/s) = 8.13 × 10−5 Mw−0.47 and [η] (dL/g) = 2.36 × 10−3 Mw0.54 for 6FDA‐OTOL and 〈D〉 (cm2/s) = 3.02 × 10−4 Mw−0.60 and [η] (dL/g) = 2.32 × 10−3 Mw0.53 for BISADA‐OTOL were established. With these scalings, we successfully converted each G(D) value into a corresponding molar mass distribution. At 30 °C, cyclopentanone is a good solvent for BISADA‐OTOL but a poor solvent for 6FDA‐OTOL; this can be attributed to an ether linkage in BISADA‐OTOL. Therefore, BISADA‐OTOL has a more extended chain conformation than 6FDA‐OTOL in cyclopentanone. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2077–2080, 2000  相似文献   

20.
The data on temperature, solvent, and high hydrostatic pressure influence on the rate of the ene reactions of 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione ( 1 ) with 2‐carene ( 2 ), and β‐pinene ( 4 ) have been obtained. Ene reactions 1 + 2 and 1 + 4 have high heat effects: ∆Hrn ( 1 + 2 ) −158.4, ∆Hrn( 1 + 4 ) −159.2 kJ mol−1, 25°C, 1,2‐dichloroethane. The comparison of the activation volume (∆V( 1 + 2 ) −29.9 cm3 mol−1, toluene; ∆V( 1 + 4 ) −36.0 cm3 mol−1, ethyl acetate) and reaction volume values (∆Vr‐n( 1 + 2 ) −24.0 cm3 mol−1, toluene; ∆Vr‐n( 1 + 4 ) −30.4 cm3 mol−1, ethyl acetate) reveals more compact cyclic transition states in comparison with the acyclic reaction products 3 and 5 . In the series of nine solvents, the reaction rate of 1+2 increases 260‐fold and 1+4 increases 200‐fold, respectively, but not due to the solvent polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号