首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The MHD Falkner–Skan equation arises in the study of laminar boundary layers exhibiting similarity on the semi‐infinite domain. The proposed approach is equipped by the orthogonal Sinc functions that have perfect properties. This method solves the problem on the semi‐infinite domain without truncating it to a finite domain and transforming domain of the problem to a finite domain. In addition, the governing partial differential equations are transformed into a system of ordinary differential equations using similarity variables, and then they are solved numerically by the Sinc‐collocation method. It is shown that the Sinc‐collocation method converges to the solution at an exponential rate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper a novel computational technique for the solution of nonlinear third‐order boundary value problems is presented. We demonstrate the application of the method by solving the famous Falkner–Skan equation on a semi‐infinite domain. Comparison with the results from other methods such as the homotopy analysis method and numerical methods demonstrates the accuracy, computational efficiency and robustness of this technique. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we use nonlinear calculations to study curved boundary‐layer flows with pressure gradients and self‐similar suction or blowing. For an accelerated outer flow, stabilization occurs in the linear region while the saturation amplitude of vortices is larger than for flows with a decelerating outer flow. The combined effects of boundary‐layer suction and a favourable pressure gradient can give a significant stabilization of the flow. Streamwise vortices can be amplified on both concave and convex walls for decelerated Falkner–Skan flow with an overshoot in the velocity profile. The disturbance amplitude is generally lower far downstream compared with profiles without overshoot. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Wave equation models currently discretize the generalized wave continuity equation with a three‐time‐level scheme centered at k and the momentum equation with a two‐time‐level scheme centered at k+1/2; non‐linear terms are evaluated explicitly. However in highly non‐linear applications, the algorithm becomes unstable at even moderate Courant numbers. This paper examines an implicit treatment of the non‐linear terms using an iterative time‐marching algorithm. Depending on the domain, results from one‐dimensional experiments show up to a tenfold increase in stability and temporal accuracy. The sensitivity of stability to variations in the G‐parameter (a numerical weighting parameter in the generalized wave continuity equation) was examined; results show that the greatest increase in stability occurs with G/τ=2–50. In the one‐dimensional experiments, three different types of node spacing techniques—constant, variable, and LTEA (Localized Truncation Error Analysis)—were examined; stability is positively correlated to the uniformity of the node spacing. Lastly, a scaling analysis demonstrates that the magnitudes of the non‐linear terms are positively correlated to those that most influence stability, particularly the term containing the G‐parameter. It is evident that the new algorithm improves stability and temporal accuracy in a cost‐effective manner. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A theoretical study of the velocity and thermal boundary-layer growth resulting from an impulsively started Falkner–Skan flow is presented in this paper. The forced convection, thermal boundary-layer is produced by the sudden increase of the surface temperature as it is set into motion. Analytical solutions for the simultaneous development of the thermal and momentum boundary layers are obtained for both small (initial, unsteady flow) and large (steady-state flow) times. These solutions are then matched numerically using a very efficient finite-difference scheme. Some considerable attention to the steady-state flow solution (large time) is also given in this paper. Results of the calculations are presented for a range of values of the Falkner–Skan exponent m and the Prandtl number Pr.  相似文献   

6.
We reformulate the depth‐averaged non‐hydrostatic extension for shallow water equations to show equivalence with well‐known Boussinesq‐type equations. For this purpose, we introduce two scalars representing the vertical profile of the non‐hydrostatic pressure. A specific quadratic vertical profile yields equivalence to the Serre equations, for which only one scalar in the traditional equation system needs to be modified. Equivalence can also be demonstrated with other Boussinesq‐type equations from the literature when considering variable depth, but then the non‐hydrostatic extension involves mixed space–time derivatives. In case of constant bathymetries, the non‐hydrostatic extension is another way to circumvent mixed space–time derivatives arising in Boussinesq‐type equations. On the other hand, we show that there is no equivalence when using the traditionally assumed linear vertical pressure profile. Linear dispersion and asymptotic analysis as well as numerical test cases show the advantages of the quadratic compared with the linear vertical non‐hydrostatic pressure profile in the depth‐averaged non‐hydrostatic extension for shallow water equations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a two‐dimensional Lagrangian–Eulerian finite element approach of non‐steady state turbulent fluid flows with free surfaces. The proposed model is based on a velocity–pressure finite element Navier–Stokes solver, including an augmented Lagrangian technique and an iterative resolution of Uzawa type. Turbulent effects are taken into account with the k–ε two‐equation statistical model. Mesh updating is carried out through an arbitrary Lagrangian–Eulerian (ALE) method in order to describe properly the free surface evolution. Three comparisons between experimental and numerical results illustrate the efficiency of the method. The first one is turbulent flow in an academic geometry, the second one is a mould filling in effective casting conditions and the third one is a precise confrontation to a water model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
A pseudo‐spectral method for the solution of incompressible flow problems based on an iterative solver involving an implicit treatment of linearized convective terms is presented. The method allows the treatment of moderately complex geometries by means of a multi‐domain approach and it is able to cope with non‐constant fluid properties and non‐orthogonal problem domains. In addition, the fully implicit scheme yields improved stability properties as opposed to semi‐implicit schemes commonly employed. Key components of the method are a Chebyshev collocation discretization, a special pressure–correction scheme, and a restarted GMRES method with a preconditioner derived from a fast direct solver. The performance of the proposed method is investigated by considering several numerical examples of different complexity, and also includes comparisons to alternative solution approaches based on finite‐volume discretizations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
It is well known that exact projection methods (EPM) on non‐staggered grids suffer for the presence of non‐solenoidal spurious modes. Hence, a formulation for simulating time‐dependent incompressible flows while allowing the discrete continuity equation to be satisfied up to machine‐accuracy, by using a Finite Volume‐based second‐order accurate projection method on non‐staggered and non‐uniform 3D grids, is illustrated. The procedure exploits the Helmholtz–Hodge decomposition theorem for deriving an additional velocity field that enforces the discrete continuity without altering the vorticity field. This is accomplished by first solving an elliptic equation on a compact stencil that is by performing a standard approximate projection method (APM). In such a way, three sets of divergence‐free normal‐to‐face velocities can be computed. Then, a second elliptic equation for a scalar field is derived by prescribing that its additional discrete gradient ensures the continuity constraint based on the adopted linear interpolation of the velocity. Characteristics of the double projection method (DPM) are illustrated in details and stability and accuracy of the method are addressed. The resulting numerical scheme is then applied to laminar buoyancy‐driven flows and is proved to be stable and efficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
A depth‐averaged two‐dimensional model has been developed in the curvilinear co‐ordinate system for free‐surface flow problems. The non‐linear convective terms of the momentum equations are discretized based on the explicit–finite–analytic method with second‐order accuracy in space and first‐order accuracy in time. The other terms of the momentum equations, as well as the mass conservation equation, are discretized by the finite difference method. The discretized governing equations are solved in turn, and iteration in each time step is adopted to guarantee the numerical convergence. The new model has been applied to various flow situations, even for the cases with the presence of sub‐critical and supercritical flows simultaneously or sequentially. Comparisons between the numerical results and the experimental data show that the proposed model is robust with satisfactory accuracy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, five different algorithms are presented for the simulation of low Mach flows with large temperature variations, based on second‐order central‐difference or fourth‐order compact spatial discretization and a pressure projection‐type method. A semi‐implicit three‐step Runge–Kutta/Crank–Nicolson or second‐order iterative scheme is used for time integration. The different algorithms solve the coupled set of governing scalar equations in a decoupled segregate manner. In the first algorithm, a temperature equation is solved and density is calculated from the equation of state, while the second algorithm advances the density using the differential form of the equation of state. The third algorithm solves the continuity equation and the fourth algorithm solves both the continuity and enthalpy equation in conservative form. An iterative decoupled algorithm is also proposed, which allows the computation of the fully coupled solution. All five algorithms solve the momentum equation in conservative form and use a constant‐ or variable‐coefficient Poisson equation for the pressure. The efficiency of the fourth‐order compact scheme and the performances of the decoupling algorithms are demonstrated in three flow problems with large temperature variations: non‐Boussinesq natural convection, channel flow instability, flame–vortex interaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Non‐linear turbulence models can be seen as an improvement of the classical eddy‐viscosity concept due to their better capacity to simulate characteristics of important flows. However, application of non‐linear models demand robustness of the numerical method applied, requiring a stable discretization scheme for convergence of all variables involved. Usually, non‐linear terms are handled in an explicit manner leading to possible numerical instabilities. Thus, the present work shows the steps taken to adapt a general non‐linear constitutive equation using a new semi‐implicit numerical treatment for the non‐linear diffusion terms. The objective is to increase the degree of implicitness of the solution algorithm to enhance convergence characteristics. Flow over a backward‐facing step was computed using the control volume method applied to a boundary‐fitted coordinate system. The SIMPLE algorithm was used to relax the algebraic equations. Classical wall function and a low Reynolds number model were employed to describe the flow near the wall. The results showed that for certain combination of relaxation parameters, the semi‐implicit treatment proposed here was the sole successful treatment in order to achieve solution convergence. Also, application of the implicit method described here shows that the stability of the solution either increases (high Reynolds with non‐orthogonal mesh) or preserves the same (low Reynolds number applications). Additional advantages of the procedure proposed here lie in the possibility of testing different non‐linear expressions if one considers the enhanced robustness and stability obtained for the entire numerical algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A finite element, thermally coupled incompressible flow formulation considering phase‐change effects is presented. This formulation accounts for natural convection, temperature‐dependent material properties and isothermal and non‐isothermal phase‐change models. In this context, the full Navier–Stokes equations are solved using a generalized streamline operator (GSO) technique. The highly non‐linear phase‐change effects are treated with a temperature‐based algorithm, which provides stability and convergence of the numerical solution. The Boussinesq approximation is used in order to consider the temperature‐dependent density variation. Furthermore, the numerical solution of the coupled problem is approached with a staggered incremental‐iterative solution scheme, such that the convergence criteria are written in terms of the residual vectors. Finally, this formulation is used for the solutions of solidification and melting problems validating some numerical results with other existing solutions obtained with different methodologies. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
This paper builds upon earlier work that developed and evaluated a 1D predictor–corrector time‐marching algorithm for wave equation models and extends it to 2D. Typically, the generalized wave continuity equation (GWCE) utilizes a three time‐level semi‐implicit scheme centred at k, and the momentum equation uses a two time‐level scheme centred at k+12. It has been shown that in highly non‐linear applications, the algorithm becomes unstable at even moderate Courant numbers. This work implements and analyses an implicit treatment of the non‐linear terms through the use of an iterative time‐marching algorithm in the two‐dimensional framework. Stability results show at least an eight‐fold increase in the maximum time step, depending on the domain. Studies also examined the sensitivity of the G parameter (a numerical weighting parameter in the GWCE) with results showing the greatest increase in stability occurs when 1?G/τmax?10, a range that coincides with the recommended range to minimize errors. Convergence studies indicate an increase in temporal accuracy from first order to second order, while overall error is less than the original algorithm, even at higher time steps. Finally, a parallel implementation of the new algorithm shows that it scales well. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
This paper is devoted to the development of a parallel, spectral and second‐order time‐accurate method for solving the incompressible and variable density Navier–Stokes equations. The method is well suited for finite thickness density layers and is very efficient, especially for three‐dimensional computations. It is based on an exact projection technique. To enforce incompressibility, for a non‐homogeneous fluid, the pressure is computed using an iterative algorithm. A complete study of the convergence properties of this algorithm is done for different density variations. Numerical simulations showing, qualitatively, the capabilities of the developed Navier–Stokes solver for many realistic problems are presented. The numerical procedure is also validated quantitatively by reproducing growth rates from the linear instability theory in a three‐dimensional direct numerical simulation of an unstable, non‐homogeneous, flow configuration. It is also shown that, even in a turbulent flow, the spectral accuracy is recovered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A finite difference–pseudo‐spectral (FD–PS) algorithm is developed to simulate the viscous fingering instability in high mobility‐ratio (MR) miscible displacements. This novel algorithm uses the fully implicit alternating‐direction implicit (ADI) method combined with a Hartley based pseudo‐spectral method to solve the Poisson equation involving the streamfunction and the vorticity. In addition, under‐relaxation in the iterative evaluation of the streamfunction is adopted. The new code allowed to model successfully the viscous fingering instability for mobility‐ratios as high as 1800, and new non‐linear viscous fingering mechanisms are discovered. A systematic analysis of the effects of the MR, the Peclet number and the aspect ratio on the finger growth is conducted. It is found that the growth of the interfacial instability accelerates with increase in the MR and Peclet number. At larger values of these parameters the increased stiffness of the corresponding numerical problem caused significant increase in the computational time as it required finer grids and smaller time steps to capture the fine structures of the viscous fingers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Numerical methods for the Baer–Nunziato model of compressible two‐phase flow have attracted much attention in recent years. In this paper, a two‐phase Bhatnagar–Gross–Krook (BGK) model is constructed in which the non‐conservative terms in the Baer–Nunziato model are considered as the external forces and the collisions both with particles of their phases and other phases are taken into consideration. On the basis of this BGK model, the so‐called modified Baer–Nunziato model is derived and a gas‐kinetic scheme for this modified model is presented. The distribution functions are constructed at the cell interface based on the integral solutions of the BGK equations for both phases. Then, numerical fluxes can be obtained by taking moments of the distribution functions, and non‐conservative terms are explicitly introduced into the construction of numerical fluxes. In this method, not only the iterative processes in the exact Riemann solvers are eliminated but also the collisions with the particles of other phases are taken into account. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper considers numerical simulation of time‐dependent non‐linear partial differential equation resulting from a single non‐linear conservation law in h, p, k mathematical and computational framework in which k=(k1, k2) are the orders of the approximation spaces in space and time yielding global differentiability of orders (k1?1) and (k2?1) in space and time (hence k‐version of finite element method) using space–time marching process. Time‐dependent viscous Burgers equation is used as a specific model problem that has physical mechanism for viscous dissipation and its theoretical solutions are analytic. The inviscid form, on the other hand, assumes zero viscosity and as a consequence its solutions are non‐analytic as well as non‐unique (Russ. Math. Surv. 1962; 17 (3):145–146; Russ. Math. Surv. 1960; 15 (6):53–111). In references (Russ. Math. Surv. 1962; 17 (3):145–146; Russ. Math. Surv. 1960; 15 (6):53–111) authors demonstrated that the solutions of inviscid Burgers equations can only be approached within a limiting process in which viscosity approaches zero. Many approaches based on artificial viscosity have been published to accomplish this including more recent work on H(Div) least‐squares approach (Commun. Pure Appl. Math. 1965; 18 :697–715) in which artificial viscosity is a function of spatial discretization, which diminishes with progressively refined discretizations. The thrust of the present work is to point out that: (1) viscous form of the Burgers equation already has the essential mechanism of viscosity (which is physical), (2) with progressively increasing Reynolds (Re) number (thereby progressively reduced viscosity) the solutions approach that of the inviscid form, (3) it is possible to compute numerical solutions for any Re number (finite) within hpk framework and space–time least‐squares processes, (4) the space–time residual functional converges monotonically and that it is possible to achieve the desired accuracy, (5) space–time, time marching processes utilizing a single space–time strip are computationally efficient. It is shown that viscous form of the Burgers equation without linearizing provides a physical and viablemechanism for approaching the solutions of inviscid form with progressively increasing Re. Numerical studies are presented and the computed solutions are compared with published work. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A simple, robust, mass‐conserving numerical scheme for solving the linear advection equation is described. The scheme can estimate peak solution values accurately even in regions where spatial gradients are high. Such situations present a severe challenge to classical numerical algorithms. Attention is restricted to the case of pure advection in one and two dimensions since this is where past numerical problems have arisen. The authors' scheme is of the Godunov type and is second‐order in space and time. The required cell interface fluxes are obtained by MUSCL interpolation and the exact solution of a degenerate Riemann problem. Second‐order accuracy in time is achieved via a Runge–Kutta predictor–corrector sequence. The scheme is explicit and expressed in finite volume form for ease of implementation on a boundary‐conforming grid. Benchmark test problems in one and two dimensions are used to illustrate the high‐spatial accuracy of the method and its applicability to non‐uniform grids. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, the basic ideas of the general boundary element method (BEM) proposed by Liao [in Boundary Elements XVII, Computational Mechanics Publications, Southampton, MA, 1995, pp. 67–74; Int. J. Numer. Methods Fluids, 23 , 739–751 (1996), 24 , 863–873 (1997); Comput. Mech., 20 , 397–406 (1997)] and Liao and Chwang [Int. J. Numer. Methods Fluids, 23 , 467–483 (1996)] are further generalized by introducing a non‐zero parameter . Some related mathematical theorems are proposed. This general BEM contains the traditional BEM in logic, but is valid for non‐linear problems, including those whose governing equations and boundary conditions have no linear terms. Furthermore, the general BEM can solve non‐linear differential equations by means of no iterations. This disturbs the absolutely governing place of iterative methodology of the BEM for non‐linear problems. The general BEM can greatly enlarge application areas of the BEM as a kind of numerical technique. Two non‐linear problems are used to illustrate the validity and potential of the further generalized BEM. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号