首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.
A Dirichlet problem is considered in a three-dimensional domain filled with a piecewise homogeneous medium. The uniqueness of its solution is proved. A system of Fredholm boundary integral equations of the second kind is constructed using the method of surface potentials, and a system of boundary integral equations of the first kind is derived directly from Green’s identity. A technique for the numerical solution of integral equations is proposed, and results of numerical experiments are presented.  相似文献   

2.
利用格林函数的性质和Banach压缩映射原理讨论了含P-Laplacian算子反周期边值问题的解.首先,求出与该边值问题相关的格林函数并给出了格林函数的性质;然后将边值问题转化为与其等价的积分方程,利用格林函数的性质及Banach压缩映射原理得到边值问题解的唯一性;最后给出实例验证结果的合理性.  相似文献   

3.
A fluid flow in a multiply connected domain generated by an arbitrary number of point vortices is considered. A stream function for this flow is constructed as a limit of a certain functional sequence using the method of images. The convergence of this sequence is discussed, and the speed of convergence is determined explicitly. The presented formulas allow for an easy computation of the values of the stream function with arbitrary precision in the case of well-separated cylinders. The considered problem is important for applications such as eddy flows in oceans. Moreover, since finding the stream function of the flow is essentially identical to finding the modified Green’s function for Laplace’s equation, the presented method can be applied to a more general class of applied problems which involve solving the Dirichlet problem for Laplace’s equation.  相似文献   

4.
A solution of the Dirichlet problem for a fractional-order ordinary differential equation has been found. Green’s function has been constructed for the problem concerned. The problem solution has been written in terms of Green’s function. A theorem on the existence and uniqueness of a solution of the posed problem has been proved, and a condition for its unique solvability has been derived. It is shown that the condition of solvability may only be violated a finite number of times.  相似文献   

5.
The eigenvalues and eigenfunctions of certain operators generated by symmetric differential expressions with constant coefficients and self-adjoint boundary conditions in the space of Lebesgue squareintegrable functions on an interval are explicitly calculated, while the resolvents of these operators are integral operators with kernels for which the theorem on an eigenfunction expansion holds. In addition, each of these kernels is the Green’s function of a self-adjoint boundary value problem, and the procedure for its construction is well known. Thus, the Green’s functions of these problems can be expanded in series in terms of eigenfunctions. In this study, identities obtained by this method are used to calculate the sums of convergent number series and to represent the sums of certain power series in an intergral form.  相似文献   

6.
A boundary value problem for Laplace’s equation in a bounded domain with two small holes is considered. Third-type boundary conditions are set on the boundaries of the holes. A Neumann condition is specified on the outer boundary of the domain. A uniform asymptotic approximation of the solution is constructed and justified up to an arbitrary power of a small parameter.  相似文献   

7.
We study the vacuum polarization of zero-mass charged fermions in Coulomb and Aharonov–Bohm potentials in 2+1 dimensions. For this, we construct the Green’s function of the two-dimensional Dirac equation in the considered field configuration and use it to find the density of the induced vacuum charge in so-called subcritical and supercritical regions. The Green’s function is represented in regular and singular (in the source) solutions of the Dirac radial equation for a charged fermion in Coulomb and Aharonov–Bohm potentials in 2+1 dimensions and satisfies self-adjoint boundary conditions at the source. In the supercritical region, the Green’s function has a discontinuity related to the presence of singularities on the nonphysical sheet of the complex plane of “energy,” which are caused by the appearance of an infinite number of quasistationary states with negative energies. Ultimately, this situation represents the neutral vacuum instability. On the boundary of the supercritical region, the induced vacuum charge is independent of the self-adjoint extension. We hope that the obtained results will contribute to a better understanding of important problems in quantum electrodynamics and will also be applicable to the problem of screening the Coulomb impurity due to vacuum polarization in graphene with the effects associated with taking the electron spin into account.  相似文献   

8.
We obtain a new upper estimate for the Green’s function associated with a higher order fractional boundary value problem. As an application of this result, criteria for the existence of positive solutions of the problem are then established.  相似文献   

9.
A spectral decomposition of the Green’s function of the Holmgren problem in a cylindrical domain is used to obtain Bitsadze–Samarskii boundary conditions for a regular elliptic-parabolic volume potential.  相似文献   

10.
A new approach for symbolically solving linear boundary value problems is presented. Rather than using general-purpose tools for obtaining parametrized solutions of the underlying ODE and fitting them against the specified boundary conditions (which may be quite expensive), the problem is interpreted as an operator inversion problem in a suitable Banach space setting. Using the concept of the oblique Moore—Penrose inverse, it is possible to transform the inversion problem into a system of operator equations that can be attacked by virtue of non-commutative Gröbner bases. The resulting operator solution can be represented as an integral operator having the classical Green’s function as its kernel. Although, at this stage of research, we cannot yet give an algorithmic formulation of the method and its domain of admissible inputs, we do believe that it has promising perspectives of automation and generalization; some of these perspectives are discussed.  相似文献   

11.
The classical two-dimensional Fuller problem is considered. The boundary value problem of Pontryagin’s maximum principle is considered. Based on the central symmetry of solutions to the boundary value problem, the Pontryagin maximum principle as a necessary condition of optimality, and the hypothesis of the form of the switching line, a solution to the boundary value problem is constructed and its optimality is substantiated. Invariant group analysis is in this case not used. The results are of considerable methodological interest.  相似文献   

12.
A boundary-value problem for the wave equation in a stratified medium with mixed boundary conditions on the boundary in the case of high oscillation frequencies is considered. The Helmholtz equation for a velocity function increasing monotonically with depth is investigated. The problem is reduced to an integral equation in the high-frequency approximation, and an explicitly smooth term of its asymptotic solution is constructed.  相似文献   

13.
A problem of optimal boundary control is considered for a divergent linear parabolic equation. Equality constraints of the problem are given by nondifferentiable functionals. A dual regularization algorithm stable to errors in initial data is constructed for solving the problem. Pontryagin’s maximum principle plays the key role in this algorithm.  相似文献   

14.
We present a two-point impulsive boundary value problem on the half-line with infinite impulsive effects on the unknown function and its derivative given by generalized functions.In this way, this problem can be applied to phenomena where the occurrence of infinite jumps depends not only on the instant, but also on their amplitude and frequency. The arguments apply Green’s functions and Schauder’s fixed-point theorem. The concept of equiconvergence at +∞ and at each impulsive moment is a key point to have a compact operator.  相似文献   

15.
The present work is devoted to the studying of a boundary-value problem with Neumann’s condition for three-dimensional elliptic equation with singular coefficients. The main result is a proof of the unique solvability of the problem considered. An energy integral method and a Green’s function method were used as the main tools in the proof of the main result. The unique solution is found in an explicit form, which contains Appel’s hypergeometric functions.  相似文献   

16.
In this paper, we explore the effect of numerical integration on the Galerkin meshless method used to approximate the solution of an elliptic partial differential equation with non-constant coefficients with Neumann boundary conditions. We considered Galerkin meshless methods with shape functions that reproduce polynomials of degree k?≥?1. We have obtained an estimate for the energy norm of the error in the approximate solution under the presence of numerical integration. This result has been established under the assumption that the numerical integration rule satisfies a certain discrete Green’s formula, which is not problem dependent, i.e., does not depend on the non-constant coefficients of the problem. We have also derived numerical integration rules satisfying the discrete Green’s formula.  相似文献   

17.
不对称裂缝渗流规律可借助Green函数方法进行求解.根据基本渗流理论,建立了不对称裂缝点源数学模型,采用无因次化与Laplace变换,得到了Laplace空间的无因次点源数学模型微分方程.将未知Green函数与点源微分方程相结合,并考虑点源微分方程的齐次条件以及点源微分方程的特征,给出了如何构造Green函数使之满足点源微分方程齐次边界以及未知目标函数求解的一般方法.根据空间Green函数的对称性和连续性,得出了不对称裂缝点源模型Green函数的形式.最后通过不对称裂缝压裂直井渗流数学模型,验证了该文给出的Green函数两种形式与文献和商业试井分析软件Saphir的数值计算结果一致.  相似文献   

18.
In this paper, we are mainly concerned with positive solutions for a p-Laplacian fractional boundary value problem. By virtue of Jensen’s inequalities and some new properties of the Green function of the problem, we adopt the Krasnoselskii-Zabreiko fixed point theorem to establish the results of existence and multiplicity of the positive solutions. Finally, a uniqueness theorem is established by using a fixed point theorem of concave operator and an example is given to illustrate the result.  相似文献   

19.
We consider the inverse scattering problem of determining the shape and location of a crack surrounded by a known inhomogeneous media. Both the Dirichlet boundary condition and a mixed type boundary conditions are considered. In order to avoid using the background Green function in the inversion process, a reciprocity relationship between the Green function and the solution of an auxiliary scattering problem is proved. Then we focus on extending the factorization method to our inverse shape reconstruction problems by using far field measurements at fixed wave number. We remark that this is done in a non intuitive space for the mixed type boundary condition as we indicate in the sequel.  相似文献   

20.
The Saint–Venant torsion problem of a circular cylinder containing a radial crack with surface elasticity is studied. The surface elasticity is incorporated into the crack faces by using the continuum-based surface/interface model of Gurtin and Murdoch. Both an internal crack and an edge crack are considered. By using the Green’s function method, the boundary value problem is reduced to a Cauchy singular integro-differential equation of the first order, which can be numerically solved by using the Gauss–Chebyshev integration formula, the Chebyshev polynomials and the collocation method. Due to the incorporation of surface elasticity, the stresses exhibit the logarithmic singularity at the crack tips. The torsion problem of a circular cylinder containing two symmetric collinear radial cracks of equal length with surface elasticity is also solved by using a similar method. The strengths of the logarithmic singularity and the size-dependent torsional rigidity are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号