首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The features of the new interaction model ESC08c in ${\Lambda N}$ , ${\Sigma N}$ and ${\Xi N}$ channels are demonstrated single hyperon potentials ${U_Y(Y=\Lambda, \Sigma, \Xi)}$ in nuclear matter on the basis of the G-matrix theory. (K ?, K +) productions of ${\Xi}$ hypernuclei are studied with ${\Xi}$ -nucleus folding potentials.  相似文献   

2.
In this article, we study the vertexes $ \Xi_{Q}^{*}$ Q V and $ \Sigma_{Q}^{*}$ $ \Sigma_{Q}^{}$ V with the light-cone QCD sum rules, then assume the vector meson dominance of the intermediate $ \phi$ (1020) , $ \rho$ (770) and $ \omega$ (782) , and calculate the radiative decays $ \Xi_{Q}^{*}$ $ \rightarrow$ Q $ \gamma$ and $ \Sigma_{Q}^{*}$ $ \rightarrow$ $ \Sigma_{Q}^{}$ $ \gamma$ .  相似文献   

3.
In this article, we study the ${3\over 2}^{+}$ heavy and doubly heavy baryon states $\varXi^{*}_{cc}$ , $\varOmega^{*}_{cc}$ , $\varXi^{*}_{bb}$ , $\varOmega^{*}_{bb}$ , $\varSigma_{c}^{*}$ , $\varXi_{c}^{*}$ , $\varOmega_{c}^{*}$ , $\varSigma_{b}^{*}$ , $\varXi_{b}^{*}$ and $\varOmega_{b}^{*}$ by subtracting the contributions from the corresponding ${3\over 2}^{-}$ heavy and doubly heavy baryon states with the QCD sum rules, and we make reasonable predictions for their masses.  相似文献   

4.
Charmonium rescattering effects in the M1 transition of $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ are investigated by modeling a $ \chi_{{cJ}}^{}$ or J/ $ \psi$ rescattering into a $ \eta_{c}^{}$ final state. The absorptive and dispersive part of the transition amplitudes for the rescattering loops of $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) and $ \gamma$ $ \chi$ ( $ \psi$ ) are separately evaluated. The numerical results show that the contribution from the $ \gamma$ $ \chi$ ( $ \psi$ ) rescattering process is negligible. Compared with the virtual D $ \bar{{D}}$ (D *) rescattering processes, the $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) process may be regarded as the next-leading order of the hadronic loop mechanism, which only offers the partial decay width of ~ 0.045 keV to the $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ .  相似文献   

5.
Isospin violating hadronic decays of the $ \eta$ and $ \eta{^\prime}$ mesons into 3 $ \pi$ mesons are driven by a term in the QCD Lagrangian proportional to the mass difference of the d and u quarks. The source giving large yield of the mesons for such decay studies are pp interactions close to the respective kinematical thresholds. The most important physics background for $ \eta$ , $ \eta{^\prime}$ $ \rightarrow$ $ \pi$ $ \pi$ $ \pi$ is coming from direct three-pion production reactions. In case of the $ \eta$ meson the background for the decays is relatively low ( $ \approx$ 10% . The purpose of this article is to provide an estimate of the direct pion production background for the $ \eta{^\prime}$ $ \rightarrow$ 3 $ \pi$ decays. Using the inclusive data from the COSY-11 experiment we have extracted the differential cross-section for the pp $ \rightarrow$ pp -multipion production reactions with the invariant mass of the pions equal to the $ \eta{^\prime}$ meson mass and estimated an upper limit for the signal to background ratio for studies of the $ \eta{^\prime}$ $ \rightarrow$ $ \pi^{+}_{}$ $ \pi^{-}_{}$ $ \pi^{0}_{}$ decay.  相似文献   

6.
In the present work, we consider the asymptotic problem of the spatially homogeneous Boltzmann equation when almost all collisions are grazing, that is, the deviation angle $\theta $ of the collision is limited near zero (i.e., $\theta \le \epsilon $ ). We show that by taking the proper scaling to the cross-section which was used in [37], that is, assuming $$\begin{aligned} B^\epsilon ( v-v_{*},\sigma )=2(1-s)|v-v_*|^{\gamma }\epsilon ^{-3}\sin ^{-1}\theta \left( \frac{\theta }{\epsilon }\right) ^{-1-2s}\mathrm {1}_{\theta \le \epsilon }, \end{aligned}$$ where $\theta = \langle \theta ={\frac{\upsilon -\upsilon _*}{|\upsilon -\upsilon _*|}}.\sigma \rangle , $ the solution $f^\epsilon $ of the Boltzmann equation with initial data $f_0$ can be globally or locally expanded in some weighted Sobolev space as $$\begin{aligned} f^\epsilon = f+ O(\epsilon ), \end{aligned}$$ where the function $f$ is the solution of Landau equation, which is associated with the grazing collisions limit of Boltzmann equation, with the same initial data $f_0$ . This gives the rigorous justification of the Landau approximation in the spatially homogeneous case. In particular, if taking $\gamma =-3$ and $s=1-\epsilon $ in the cross-section $B^\epsilon $ , we show that the above asymptotic formula still holds and in this case $f$ is the solution of Landau equation with the Coulomb potential. Going further, we revisit the well-posedness problem of the Boltzmann equation in the limiting process. We show there exists a common lifespan such that the uniform estimates of high regularities hold for each solution $f^\epsilon $ . Thanks to the weak convergence results on the grazing collisions limit in [37], in other words, we establish a unified framework to establish the well-posedness results for both Boltzmann and Landau equations.  相似文献   

7.
Let ${\cal A}$ be the affine space of all connections in an SU(2) principal fibre bundle over ?3. The set of homogeneous isotropic connections forms a line l in ${\cal A}$ . We prove that the parallel transports for general, non-straight paths in the base manifold do not depend almost periodically on l. Consequently, the embedding $l \hookrightarrow {\cal A}$ does not continuously extend to an embedding $\overline{l} \hookrightarrow \overline{\cal A}$ of the respective compactifications. Here, the Bohr compactification $\overline{l}$ corresponds to the configuration space of homogeneous isotropic loop quantum cosmology and $\overline{\cal A}$ to that of loop quantum gravity. Analogous results are given for the anisotropic case.  相似文献   

8.
Let ${Y_{m|n}^{\ell}}$ be the super Yangian of general linear Lie superalgebra for ${\mathfrak{gl}_{m|n}}$ . Let ${e \in \mathfrak{gl}_{m\ell|n\ell}}$ be a “rectangular” nilpotent element and ${\mathcal{W}_e}$ be the finite W-superalgebra associated to e. We show that ${Y_{m|n}^{\ell}}$ is isomorphic to ${\mathcal{W}_e}$ .  相似文献   

9.
The symmetric algebra ${S(\mathfrak{g})}$ over a Lie algebra ${\mathfrak{g}}$ has the structure of a Poisson algebra. Assume ${\mathfrak{g}}$ is complex semisimple. Then results of Fomenko–Mischenko (translation of invariants) and Tarasov construct a polynomial subalgebra ${{\mathcal {H}} = {\mathbb C}[q_1,\ldots,q_b]}$ of ${S(\mathfrak{g})}$ which is maximally Poisson commutative. Here b is the dimension of a Borel subalgebra of ${\mathfrak{g}}$ . Let G be the adjoint group of ${\mathfrak{g}}$ and let ? = rank ${\mathfrak{g}}$ . Using the Killing form, identify ${\mathfrak{g}}$ with its dual so that any G-orbit O in ${\mathfrak{g}}$ has the structure (KKS) of a symplectic manifold and ${S(\mathfrak{g})}$ can be identified with the affine algebra of ${\mathfrak{g}}$ . An element ${x\in \mathfrak{g}}$ will be called strongly regular if ${\{({\rm d}q_i)_x\},\,i=1,\ldots,b}$ , are linearly independent. Then the set ${\mathfrak{g}^{\rm{sreg}}}$ of all strongly regular elements is Zariski open and dense in ${\mathfrak{g}}$ and also ${\mathfrak{g}^{\rm{sreg}}\subset \mathfrak{g}^{\rm{ reg}}}$ where ${\mathfrak{g}^{\rm{reg}}}$ is the set of all regular elements in ${\mathfrak{g}}$ . A Hessenberg variety is the b-dimensional affine plane in ${\mathfrak{g}}$ , obtained by translating a Borel subalgebra by a suitable principal nilpotent element. Such a variety was introduced in Kostant (Am J Math 85:327–404, 1963). Defining Hess to be a particular Hessenberg variety, Tarasov has shown that ${{\rm{Hess}}\subset \mathfrak{g}^{\rm{sreg}}}$ . Let R be the set of all regular G-orbits in ${\mathfrak{g}}$ . Thus if ${O\in R}$ , then O is a symplectic manifold of dimension 2n where n = b ? ?. For any ${O\in R}$ let ${O^{\rm{sreg}} = \mathfrak{g}^{\rm{sreg}} \cap O}$ . One shows that O sreg is Zariski open and dense in O so that O sreg is again a symplectic manifold of dimension 2n. For any ${O\in R}$ let ${{\rm{Hess}}(O) = {\rm{Hess}}\cap O}$ . One proves that Hess(O) is a Lagrangian submanifold of O sreg and that $${\rm{Hess}} = \sqcup_{O\in R}{\rm{Hess}}(O).$$ The main result of this paper is to show that there exists simultaneously over all ${O\in R}$ , an explicit polarization (i.e., a “fibration” by Lagrangian submanifolds) of O sreg which makes O sreg simulate, in some sense, the cotangent bundle of Hess(O).  相似文献   

10.
We review and update our results for $K\rightarrow \pi \pi $ decays and $K^0$ $\bar{K}^0$ mixing obtained by us in the 1980s within an analytic approximate approach based on the dual representation of QCD as a theory of weakly interacting mesons for large $N$ , where $N$ is the number of colors. In our analytic approach the Standard Model dynamics behind the enhancement of $\hbox {Re}A_0$ and suppression of $\hbox {Re}A_2$ , the so-called $\Delta I=1/2$ rule for $K\rightarrow \pi \pi $ decays, has a simple structure: the usual octet enhancement through the long but slow quark–gluon renormalization group evolution down to the scales $\mathcal{O}(1\, {\hbox { GeV}})$ is continued as a short but fast meson evolution down to zero momentum scales at which the factorization of hadronic matrix elements is at work. The inclusion of lowest-lying vector meson contributions in addition to the pseudoscalar ones and of Wilson coefficients in a momentum scheme improves significantly the matching between quark–gluon and meson evolutions. In particular, the anomalous dimension matrix governing the meson evolution exhibits the structure of the known anomalous dimension matrix in the quark–gluon evolution. While this physical picture did not yet emerge from lattice simulations, the recent results on $\hbox {Re}A_2$ and $\hbox {Re}A_0$ from the RBC-UKQCD collaboration give support for its correctness. In particular, the signs of the two main contractions found numerically by these authors follow uniquely from our analytic approach. Though the current–current operators dominate the $\Delta I=1/2$ rule, working with matching scales $\mathcal{O}(1 \, {\hbox { GeV}})$ we find that the presence of QCD-penguin operator $Q_6$ is required to obtain satisfactory result for $\hbox {Re}A_0$ . At NLO in $1/N$ we obtain $R=\hbox {Re}A_0/\hbox {Re}A_2= 16.0\pm 1.5$ which amounts to an order of magnitude enhancement over the strict large $N$ limit value $\sqrt{2}$ . We also update our results for the parameter $\hat{B}_K$ , finding $\hat{B}_K=0.73\pm 0.02$ . The smallness of $1/N$ corrections to the large $N$ value $\hat{B}_K=3/4$ results within our approach from an approximate cancelation between pseudoscalar and vector meson one-loop contributions. We also summarize the status of $\Delta M_K$ in this approach.  相似文献   

11.
The inclusion relations for the spaces $ \mathcal{H}\mathcal{K} $ (I), L(I), $ \mathcal{H}\mathcal{K} $ (I) ∩ $ \mathcal{B}\mathcal{V} $ (I), and L 2(I) are found. On unbounded intervals, functions in $ \mathcal{H}\mathcal{K} $ (I) ∩ $ \mathcal{B}\mathcal{V} $ (I) need not be Lebesgue integrable.  相似文献   

12.
Zs. Podolyák  S. J. Steer  S. Pietri  M. Górska  P. H. Regan  D. Rudolph  A. B. Garnsworthy  R. Hoischen  J. Gerl  H. J. Wollersheim  H. Grawe  K. H. Maier  F. Becker  P. Bednarczyk  L. Cáceres  P. Doornenbal  H. Geissel  J. Grebosz  A. Kelic  I. Kojouharov  N. Kurz  F. Montes  W. Prokopowicz  T. Saito  H. Schaffner  S. Tashenov  A. Heinz  T. Kurtukian-Nieto  G. Benzoni  M. Pfützner  A. Jungclaus  D. L. Balabanski  C. Brandau  B. A. Brown  A. M. Bruce  W. N. Catford  I. J. Cullen  Zs. Dombrádi  M. E. Estevez  W. Gelletly  G. Ilie  J. Jolie  G. A. Jones  M. Kmiecik  F. G. Kondev  R. Krücken  S. Lalkovski  Z. Liu  A. Maj  S. Myalski  S. Schwertel  T. Shizuma  P. M. Walker  E. Werner-Malento  O. Wieland 《The European Physical Journal A - Hadrons and Nuclei》2009,42(3):489-493
Heavy neutron-rich nuclei have been populated through the relativistic fragmentation of a $\ensuremath ^{208}_{\ 82}{\rm Pb}$ beam at $\ensuremath E/A = 1$ GeV on a $\ensuremath 2.5 {\rm g/cm^2}$ thick Be target. The synthesised nuclei were selected and identified in-flight using the fragment separator at GSI. Approximately 300 ns after production, the selected nuclei were implanted in an $\ensuremath \sim 8$ mm thick perspex stopper, positioned at the centre of the RISING $\ensuremath \gamma$ -ray detector spectrometer array. A previously unreported isomer with a half-life $\ensuremath T_{1/2} = 163(5)$ ns has been observed in the N = 126 closed-shell nucleus $\ensuremath ^{205}_{\ 79}{\rm Au}$ . Through $ \gamma$ -ray singles and $ \gamma$ - $ \gamma$ coincidence analysis a level scheme was established. The comparison with a shell model calculation tentatively identifies the spin-parity of the excited states, including the isomer itself, which is found to be $\ensuremath I^{\pi} = (19/2^+)$ .  相似文献   

13.
In this article, we study the critical dissipative surface quasi-geostrophic equation (SQG) in ${\mathbb{R}^2}$ R 2 . Motivated by the study of the homogeneous statistical solutions of this equation, we show that for any large initial data θ 0 liying in the space ${\Lambda^{s} (\dot{H}^{s}_{uloc}(\mathbb{R}^2)) \cap L^\infty(\mathbb{R}^2)}$ Λ s ( H ˙ u l o c s ( R 2 ) ) ∩ L ∞ ( R 2 ) the critical (SQG) has a global weak solution in time for 1/2 <  s <  1. Our proof is based on an energy inequality verified by the equation ${(SQG)_{R,\epsilon}}$ ( S Q G ) R , ? which is nothing but the (SQG) equation with truncated and regularized initial data. By classical compactness arguments, we show that we are able to pass to the limit ( ${R \rightarrow \infty}$ R → ∞ , ${\epsilon \rightarrow 0}$ ? → 0 ) in ${(SQG)_{R,\epsilon}}$ ( S Q G ) R , ? and that the limit solution has the desired regularity.  相似文献   

14.
We prove that Haag duality holds for cones in the toric code model. That is, for a cone ??, the algebra ${\mathcal{R}_{\Lambda}}$ of observables localized in ?? and the algebra ${\mathcal{R}_{\Lambda^c}}$ of observables localized in the complement ?? c generate each other??s commutant as von Neumann algebras. Moreover, we show that the distal split property holds: if ${\Lambda_1 \subset \Lambda_2}$ are two cones whose boundaries are well separated, there is a Type I factor ${\mathcal{N}}$ such that ${\mathcal{R}_{\Lambda_1} \subset \mathcal{N} \subset \mathcal{R}_{\Lambda_2}}$ . We demonstrate this by explicitly constructing ${\mathcal{N}}$ .  相似文献   

15.
We study the radiative and semileptonic B decays involving a spin-J resonant $K_{J}^{(*)}$ with parity (?1) J for $K_{J}^{*}$ and (?1) J+1 for K J in the final state. Using large energy effective theory (LEET) techniques, we formulate $B\to K_{J}^{(*)}$ transition form factors in the large recoil region in terms of two independent LEET functions $\zeta_{\perp}^{K_{J}^{(*)}}$ and $\zeta_{\parallel}^{K_{J}^{(*)}}$ , the values of which at zero momentum transfer are estimated in the BSW model. According to the QCD counting rules, $\zeta_{\perp,\parallel}^{K_{J}^{(*)}}$ exhibit a dipole dependence in q 2. We predict the decay rates for $B\to K_{J}^{(*)}\gamma$ , $B\to K_{J}^{(*)}\ell^{+}\ell^{-}$ and $B\to K_{J}^{(*)}\nu \bar{\nu}$ . The branching fractions for these decays with higher K-resonances in the final state are suppressed due to the smaller phase spaces and the smaller values of $\zeta^{K_{J}^{(*)}}_{\perp,\parallel}$ . Furthermore, if the spin of $K_{J}^{(*)}$ becomes larger, the branching fractions will be further suppressed due to the smaller Clebsch–Gordan coefficients defined by the polarization tensors of the $K_{J}^{(*)}$ . We also calculate the forward–backward asymmetry of the $B\to K_{J}^{(*)}\ell^{+}\ell^{-}$ decay, for which the zero is highly insensitive to the K-resonances in the LEET parametrization.  相似文献   

16.
In this article, we study the $\frac{1} {2}^ -$ and $\frac{3} {2}^ -$ heavy and doubly heavy baryon states $\Sigma _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi '_Q \left( {\frac{1} {2}^ - } \right)$ , $\Omega _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Omega _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Sigma _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Omega _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ and $\Omega _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ by subtracting the contributions from the corresponding $\frac{1} {2}^ +$ and $\frac{3} {2}^ +$ heavy and doubly heavy baryon states with the QCD sum rules in a systematic way, and make reasonable predictions for their masses.  相似文献   

17.
We determine the radiative decay amplitudes for the decay into D* and $ \bar{{D}}$ $ \gamma$ , or D * s and $ \bar{{D}}_{s}^{}$ $ \gamma$ of some of the charmonium-like states classified as X , Y , Z resonances, plus some other hidden charm states which are dynamically generated from the interaction of vector mesons with charm. The mass distributions as a function of the $ \bar{{D}}$ $ \gamma$ or $ \bar{{D}}_{s}^{}$ $ \gamma$ invariant mass show a peculiar behavior as a consequence of the D * $ \bar{{D}}^{*}_{}$ nature of these states. The experimental search of these magnitudes can shed light on the nature of these states.  相似文献   

18.
The presence of a narrow peak in the $ \Lambda$ p invariant-mass distribution observed in the $ \bar{{p}}$ annihilation reaction at rest $\ensuremath \bar{p} {}^4\mathrm{He}\rightarrow p\pi^-p\pi^+\pi^-n X$ is discussed again through an analysis procedure which improves the ratio signal/background in comparison with the previous analysis. The peak is centred at 2223.2±3.2stat±1.2syst MeV and has a statistical significance of 4.7 $ \sigma$ , values compatible with those published previously. If interpreted as the result of the decay into $ \Lambda$ p of a $\ensuremath { }_{\bar{K}}{}^2\mathrm{H}$ bound system, the corresponding binding energy should be B = - 151.0±3.2stat±1.2syst MeV and the width $ \Gamma_{{FWHM}}^{}$ < 33.9±6.2 MeV. The production rate has a lower limit of 1.2 10-4. Data on the $ \bar{{p}}$ annihilation reaction at rest $ \bar{{p}}$ 4He $ \rightarrow$ p $ \pi^{-}_{}$ p $ \pi^{-}_{}$ p s X , analyzed for the first time, lead to a result in qualitative agreement with the previous one.  相似文献   

19.
Newman’s measure for (dis)assortativity, the linear degree correlation coefficient $\rho _{D}$ , is reformulated in terms of the total number N k of walks in the graph with k hops. This reformulation allows us to derive a new formula from which a degree-preserving rewiring algorithm is deduced, that, in each rewiring step, either increases or decreases $\rho _{D}$ conform our desired objective. Spectral metrics (eigenvalues of graph-related matrices), especially, the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and the algebraic connectivity $\mu _{N-1}$ (second-smallest eigenvalue of the Laplacian) are powerful characterizers of dynamic processes on networks such as virus spreading and synchronization processes. We present various lower bounds for the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and we show, apart from some classes of graphs such as regular graphs or bipartite graphs, that the lower bounds for $\lambda _{1}$ increase with $\rho _{D}$ . A new upper bound for the algebraic connectivity $\mu _{N-1}$ decreases with $\rho _{D}$ . Applying the degree-preserving rewiring algorithm to various real-world networks illustrates that (a) assortative degree-preserving rewiring increases $\lambda _{1}$ , but decreases $\mu _{N-1}$ , even leading to disconnectivity of the networks in many disjoint clusters and that (b) disassortative degree-preserving rewiring decreases $\lambda _{1}$ , but increases the algebraic connectivity, at least in the initial rewirings.  相似文献   

20.
The complete Breit potential contains the terms of spin-spin, spin-orbit, orbit-orbit, and tensor force interactions which become singular at short distance. Most of previous calculations of the non-relativistic potential quark model considered only the spin-spin interaction and substituted the $ \delta$ (r) -function by the Gaussian or Yukawa potential in coordinate space. Recently, a method to regularize the Breit potential consists of subtracting terms that cancel the singularity at the origin but leave the intermediate- and long-distance behavior unchanged. Motivated by this work we regularize the Breit potential by multiplying the singular terms in momentum space identically by the form factor [ $ \mu^{2}_{}$ /(q 2 + $ \mu^{2}_{}$ )]2 of the momentum transfer q , where the screened mass μ increases with the reduced mass of the meson. With the regularized Breit potential we calculate the masses of 30 common mesons and the new $ \eta_{b}^{}$ meson. We find that the calculated masses from light to heavy mesons agree well with experimental data. The inclusion of such a dependence of the reduced mass in the potential regularization improves the spin-spin splittings of $ \eta_{c}^{}$ -J/ $ \psi$ and $ \eta_{b}^{}$ - $ \Upsilon$ (1S) . The spin-orbit and tensor force interactions in the Breit potential lead to the splittings of $ \chi_{{c0}}^{}$ , $ \chi_{{c1}}^{}$ , and $ \chi_{{c2}}^{}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号