首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wormlike micelles formed with the surfactant pentaoxyethylene decyl ether C10E5 containing n-dodecanol were characterized by static (SLS) and dynamic light scattering (DLS) experiments. The SLS results have been analyzed with the aid of the light scattering theory for micelle solutions, thereby yielding the molar mass Mw(c) as a function of concentration c along with the cross-sectional diameter d of the micelle. The observed Kc/DeltaR0 as a function of c and the hydrodynamic radius RH as functions of Mw have been well described by the theories for the wormlike spherocylinder model. It has also been demonstrated that the apparent hydrodynamic radius RH,app(c) as a function of c is well described by a fuzzy cylinder theory which takes into account the hydrodynamic and direct collision interactions among micelles. Our previous results for the hexaoxyethylene dodecyl ether C12E6 micelles containing n-dodecanol were reanalyzed in the same scheme. It has been found that the micellar length increases with increasing concentration c or with raising temperature T irrespective of the composition of the C10E5 + n-dodecanol and C12E6 + n-dodecanol systems. The length of the micelles at fixed c and T steeply increases with increasing weight fraction wd of n-dodecanol in both systems. The growth of the micelles accompanies the increase of the cross-sectional diameter d of the micelles and the results that the surfactant molecules are more densely assembled with increasing wd in order to keep n-dodecanol molecules inside the micelles.  相似文献   

2.
Wormlike micelles of the surfactant penta-, hexa-, and heptaoxyethylene dodecyl ethers C12 E5, C12 E6, and C12 E7 were characterized by static light scattering (SLS) and dynamic light scattering (DLS) experiments to examine effects of uptake of n-dodecane on the micellar characteristics. The SLS results have been successfully analyzed by the light scattering theory for micelle solutions to yield the molar mass Mw(c) as a function of concentration c along with the cross-sectional diameter d of the micelle. The apparent hydrodynamic radius RH,app(c) determined by DLS as a function of c has also been successfully analyzed by the fuzzy cylinder theory which (-1). It has been found that the micellar length Lw increases with increasing surfactant mass concentration c and the values of d and lambda(-1) increase with increasing n-dodecane content wd, as in the case of various CiEj micelles containing n-alcohol. On the other hand, the values of Mw, Lw, and RH,app for all the micelles examined decrease with increasing wd contrary to the micelles containing n-alcohol. This finding may be attributed to the fact that the addition of n-dodecane into the micelles weakens hydrophilic interactions among polyoxyethylene chains of the surfactant molecules and water, making the micelles unstable, and then leading them to collapse into smaller micelles.  相似文献   

3.
The wormlike micelles formed with the binary mixtures of surfactant polyoxyethylene alkyl ethers (CiEj), C10E5 + C14E5 (Mix1) and C14E5 + C14E7 (Mix2), were characterized by static (SLS) and dynamic light scattering (DLS) experiments. The SLS results have been analyzed with the aid of the light scattering theory for micelle solutions, thereby yielding the molar mass Mw(c) as a function of c along with the cross-sectional diameter d of the micelle. The observed Kc/DeltaR0 as a function of c, the mean-square radius of gyration (S2) and the hydrodynamic radius RH as functions of Mw have been well described by the theories for the wormlike spherocylinder model. It has been found that the micellar length increases with increasing concentration c or with raising temperature T irrespective of the composition of the surfactant mixtures. The length of the Mix1 and Mix2 micelles at fixed c and T steeply increases with increasing weight fraction wt of C14E5 in both of the surfactant mixtures, implying that the micelles greatly grow in length when the surfactant component with longer alkyl group or with shorter oxyethylene group increases in the mixture. The results are in line with the findings for the micelles of the single surfactant systems where the CiEj micelles grow in length to a greater extent for larger i and smaller j. Although the values of d and the spacing s between the adjacent surfactant molecules on the micellar surface do not significantly vary with composition of the surfactant mixture, the stiffness parameter lambda-1 remarkably decreases with wt in both Mix1 and Mix2 micelles, indicating that the stiffness of the micelle is controlled by the relative strength of the repulsive force due to the hydrophilic interactions between oxyethylene groups to the attractive one due to the hydrophobic interactions between alkyl groups among the surfactant molecules.  相似文献   

4.
Wormlike micelles of nonionic surfactants pentaoxyethylene decyl ether C(10)E(5) and hexaoxyethylene decyl ether C(10)E(6) in dilute aqueous solutions were characterized by static (SLS) and dynamic light scattering (DLS) experiments at several temperatures T below the critical points. The SLS results were analyzed with the aid of the molecular thermodynamic theory for SLS from micelle solutions formulated with the wormlike spherocylinder model, thereby yielding the molar mass M(w) of the micelles as a function of c and the cross-sectional diameter d of 2.6 nm for both C(10)E(5) and C(10)E(6) micelles. It has been found that the micelles grow in size with increasing c and T, following the relation M(w) proportional, variant c(1/2) in conformity with the theoretical prediction for highly extended polymerlike micelles. The hydrodynamic radius R(H) of the micelles as a function of M(w) was found to be also well described by the corresponding theories for the wormlike spherocylinder model. The results of the stiffness parameter lambda(-1) show that both micelles are rather stiff compared with those formed with other polyoxyethylene alkyl ethers C(i)E(j) but far from rigid rods. The values of the spacing s between two adjacent hexaoxyethylene chains on the micellar surface were found to be substantially the same for both micelles.  相似文献   

5.
Size, shape, and flexibility of micelles of octaoxyethylene tetradecyl C(14)E(8), hexadecyl C(16)E(8), and octadecyl C(18)E(8) ethers in dilute aqueous solutions were determined at finite surfactant concentrations c by static light scattering (SLS) and dynamic light scattering experiments at several temperatures T below the critical points. The SLS results were successfully analyzed with the aid of the thermodynamic theory formulated with wormlike spherocylinder model for SLS of micelle solutions. The analysis yielded the molar mass M(w) of the micelles as a function of c and the cross-sectional diameter d. The hydrodynamic radius R(H) and the radius of gyration S(2)(1/2) of the micelles as functions of M(w) were found to be also well-described by the corresponding theories for the wormlike spherocylinder or wormlike chain models. The results of the stiffness parameter lambda(-1) have revealed that the micelles are far from rigid rods but rather stiff compared with typical flexible polymers and they grow in size with increasing T to greater length for longer hydrophobic chains, i.e., alkyl groups of the surfactants. As the alkyl group becomes longer, the d value increased, while the spacings s between adjacent hexaoxyethylene chains on the micellar surface were found to remain substantially constant.  相似文献   

6.
研究了烷基苯磺酸盐Gemini表面活性剂Ia与非离子表面活性剂C10E6溶液混合胶团中分子间的相互作用. 通过表面张力法测定了Ia 和C10E6不同比例不同温度下的临界胶束浓度(cmc). 结果表明, 两种表面活性剂以任何比例复配的cmc比单一表面活性剂的cmc都低, 表现出良好的协同效应. 传统型非离子表面活性剂C10E6、Gemini表面活性剂Ia及混合物的cmc都随着温度升高而降低. 而且, 任何配比的混合胶团中两种表面活性剂分子间的相互作用参数β都是负值, 这说明两种表面活性剂在混合胶团中产生了相互吸引的作用. 混合表面活性剂体系的胶团聚集数比单一Ia的大, 但比单一C10E6的小. 向Gemini表面活性剂Ia胶束中加入非离子表面活性剂C10E6会使胶束的微观极性变小.  相似文献   

7.
Dielectric behavior was examined for aqueous solutions of the betaine-type surfactants dodecyldimethylcarbobetaine (C(12)DCB), tetradecyldimethylcarbobetaine (C(14)DCB), cetyldimethylcarbobetaine (C(16)DCB), and oleyldimethylcarbobetaine (OleyDCB) as a function of frequency from 1.00 x 10(6) to 2.00 x 10(10) Hz (6.28 x 10(6) to 1.26 x 10(11) rad s(-1)) with changing surfactant concentration (c(D)). Rotational relaxation times (tau) of the zwitterionic headgroups of the surfactants in aqueous solutions of C(12)DCB and C(14)DCB, which form spherical micelles, are determined to be 0.26 and 0.30 ns, respectively. Values of tau for aqueous solutions of C(16)DCB and OleyDCB, which form threadlike micelles, are identical at 0.44 ns. The tau values of all micellar solutions are constant irrespective of c(D). The increase in tau with increasing alkyl chain length is assigned to an increase of molecular density at the micellar surface. The magnitude of the relaxation strength for the surfactant solutions increases in proportion to c(D) and is not so different from that of an aqueous solution of glycine betaine (GB), which has the same chemical structure as betaine-type surfactants with zwitterionic headgroups but never forms micelles. This finding suggests that the zwitterionic headgroup rotating on the micellar surface possesses a dipole moment with a magnitude essentially the same as that of GB in aqueous solutions.  相似文献   

8.
采用1HNMR弛豫、自扩散系数和二维相敏(2DNOESY)实验研究了正十四烷基硫酸钠[n-CH3(CH2)13OSO3Na(STS)]和正十四烷基聚氧乙烯醚(3)[n-CH3(CH2)13O(C2H4O)3H(C14E3)]在溶液中的自聚集以及二者混合后的相互作用.结果表明,STS与C14E3混合后存在相互作用,并形成混合胶束;弛豫实验表明,混合胶束中STS疏水链质子运动更加受阻,C14E3的α-(4″)和β-CH2(3″)处链堆积紧密.C14E3的亲水端(CH2CH20)3链卷曲紧贴在疏水壳表面外链堆积较紧密处.自扩散系数测量表明,混合胶束比单一阴离子表面活性剂形成的胶束大.单一非离子型胶束和混合胶束的亲水端(CH2CH20)3(5″)链构成相应较软和松散的外壳.单一C14E3在极性溶剂氯仿溶液中,质子运动比在水中自由度大,但2DNOESY谱中出现了少量分子间的交叉峰,也可能形成了一些小的聚集体.  相似文献   

9.
The present article reports on static and dynamic light scattering (SLS and DLS) studies of aqueous solutions of the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) at temperatures between 25 and 45 degrees C. In water, P123 self-assembles into spherical micelles with a hydrodynamic radius of 10 nm, and at 40 degrees C, these micelles consist of 131 unimers. Addition of C12EO6 leads to an association of the surfactant molecules to the P123 micelles and mixed micelles are formed. The size and structure of the mixed micelles as well as interparticle interactions were studied by varying the surfactant-to-copolymer (C12EO6/P123) molar ratio. The novelty of this study consists of a composition-induced structural change of the mixed micelles at constant temperature. They gradually change from being spherical to polymer-like with increasing C12EO6 content. At low C12EO6/P123 molar ratios (below 12), the SLS measurements showed that the molar mass of the mixed micelles decreases with an increasing amount of C12EO6 in the micelles for all investigated temperatures. In this regime, the mixed micelles are spherical and the DLS measurements revealed a decrease in the hydrodynamic radius of the mixed micelles. An exception was found for C12EO6/P123 molar ratios between 2 and 3, where the mixed micelles become rodlike at 40 degrees C. This was the subject of a previous study and has hence not been investigated here. At high molar ratios (48 and above), the polymer-like micelles present a concentration-induced growth, similar to that observed in the pure C12EO6/water system.  相似文献   

10.
Solubilization of benzene, toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, and n-pentylbenzene into the micelles of octaethylene glycol monotetradecyl ether (C(14)E(8)) was studied, where equilibrium concentrations of all the solubilizates were determined spectrophotometrically at 298.2, 303.2, and 308.2 K. The concentration of the above solubilizates except benzene remained constant below the critical micelle concentration (cmc) and increased linearly with an increase in C(14)E(8) concentration above the cmc, whereas benzene concentration was found to remain constant over the whole concentration range of C(14)E(8). The Gibbs energy change (DeltaG(0)) for their solubilization was evaluated by the partitioning of the solubilizates between the aqueous phase and the micellar phase because of the large aggregation number of the C(14)E(8) micelle. Furthermore, enthalpy and entropy changes for their solubilization were evaluated from the temperature dependence of the DeltaG(0) values. From these thermodynamical parameters and the change in absorption spectra of the solubilizates due to their incorporation into the micelles, the solubilization site was found to move into the inner core of the micelle with increasing alkyl chain length of the solubilizates.  相似文献   

11.
We have studied aqueous micellar solutions of nonionic surfactant (pentaethylene glycol mono-n-dodecyl ether, C12E5) doped by cationic surfactant (dodecyl trimethylamoniumbromide, DTAB) as a function of doping level, using small angle neutron scattering. At a doping level of at least 6 mol %, rigid cylindrical micelles formed and the local cylindrical structure of the doped micelles showed no variation across the range of doping levels covered in this study (0-10 mol %). However, the total micellar length decreased rapidly as doping level increased, following well the prediction of micellar aggregation number based on molecular-thermodynamic theory. There was no synergistic interaction between surfactants, leading to monotonically decreasing the micellar aggregation number (shortening of the micellar length).  相似文献   

12.
Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of N-(2'-methoxyphenyl)phthalimide (1) decrease nonlinearly with increasing total concentration of nonionic surfactant C(m)E(n) (i.e. [C(m)E(n)](T) where m and n represent the respective number of methyl/methylene units in the tail and polyoxyethylene units in the headgroup of a surfactant molecule and m/n=16/20, 12/23 and 18/20) at constant 2% v/v CH(3)CN and 1.0 mM NaOH. The k(obs)vs. [C(m)E(n)](T) data follow the pseudophase micellar (PM) model at ≤ 50 mM C(16)E(20), ≤ 1.4 mM C(12)E(23) and ≤ 2.0 mM C(18)E(20) where rate of hydrolysis of 1 in micellar pseudophase could not be detected. The values of k(obs) fail to follow the PM model at > ~50 mM C(16)E(20), > ~1.4 mM C(12)E(23) and > ~2.0 mM C(18)E(20) which has been attributed to a micellar structural transition from spherical to rodlike which in turn increases C(m)E(n) micellar binding constant (K(S)) of 1 with increasing values of [C(m)E(n)](T). Rheological measurements show the presence of spherical micelles at ≤ 50 mM C(16)E(20), ≤ 1.4 mM C(12)E(23) and ≤ 3.0 mM C(18)E(20). The presence of rodlike micelles is evident from rheological measurements at > ~50 mM C(16)E(20), > ~1.4 mM C(12)E(23) and > ~3.0 mM C(18)E(20).  相似文献   

13.
We studied the thermal diffusion behavior of hexaethylene glycol monododecyl ether (C12E6) in water by means of thermal diffusion forced Rayleigh scattering (TDFRS) and determined Soret coefficients, thermal diffusion coefficients, and diffusion constants at different temperatures and concentrations. At low surfactant concentrations, the measured Soret coefficient is positive, which implies that surfactant micelles move toward the cold region in a temperature gradient. For C12E6/water at a high surfactant concentration of w1 = 90 wt % and a temperature of T = 25 degrees C, however, a negative Soret coefficient S(T) was observed. Because the concentration part of the TDFRS diffraction signal for binary systems is expected to consist of a single mode, we were surprised to find a second, slow mode for C12E6/water system in a certain temperature and concentration range. To clarify the origin of this second mode, we investigated also, tetraethylene glycol monohexyl ether (C6E4), tetraethylene glycol monooctyl ether (C8E4), pentaethylene glycol monododecyl ether (C12E5), and octaethylene glycol monohexadecyl ether (C16E8) and compared the results with the previous results for octaethylene glycol monodecyl ether (C10E8). Except for C6E4 and C10E8, a second slow mode was observed in all systems usually for state points close to the phase boundary. The diffusion coefficient and Soret coefficient derived from the fast mode can be identified as the typical mutual diffusion and Soret coefficients of the micellar solutions and compare well with the independently determined diffusion coefficients in a dynamic light scattering experiment. Experiments with added salt show that the slow mode is suppressed by the addition of w(NaCl) = 0.02 mol/L sodium chloride. This suggests that the slow mode is related to the small amount of absorbing ionic dye, less than 10(-5) by weight, which is added in TDFRS experiments to create a temperature grating. The origin of the slow mode of the TDFRS signal will be tentatively interpreted in terms of a ternary mixture of neutral micelles, dye-charged micelles, and water.  相似文献   

14.
The diffusion of both water and surfactant components in aqueous solutions of the nonionic surfactant "C12E6"--which includes hexagonal, cubic, lamellar, and micellar mesophases--has been studied by pulsed-field-gradient NMR. Diffusion coefficients were measured in unaligned samples in all of these phases. They were also obtained in the hexagonal and lamellar phases in oriented monodomain samples that were aligned by slow cooling from the micellar phase in an 11.7 T magnet. Measured water and soap diffusion coefficients in the NMR-isotropic cubic and (high-water-content) micellar phases as well as diffusion anisotropy measurements in the magnetically aligned hexagonal phase were quantitatively consistent with the constituent structures of these phases being identical surfactant cylinders, with only the fraction of surface-associated water varying with the water-soap molar ratio. The values of the water and soap diffusion coefficients in the oriented lamellar phase suggest an increase in defects and obstructions to soap diffusion as a function of increasing water content, while those in the low-water-content micellar phase rule out the presence of inverse micelles.  相似文献   

15.
The cloud point temperature, T(c), was investigated for aqueous solutions of poly(oxyethylene) alkyl ethers, C(n)E(m), and their mixtures. The experimental T(c)'s for single surfactant systems were analyzed according to the Flory-Huggins model for cloud point phenomenon, and the enthalpy and the entropy changes associated with the process of the separation of micellar solution into pure water and pure surfactant were estimated. It was found that the enthalpy-entropy compensation relationship holds for this process. The Flory-Huggins model was extended to the binary surfactant mixtures, and the expression of T(c) as a function of the composition was derived assuming the regular solution for mixed micelles. The experimental results of T(c) obtained for mixtures of C(n)E(m) were well reproduced by the model calculation. Discussion is given concerning the interaction parameters of different surfactant species in mixed micelles determined by this model calculation.  相似文献   

16.
Shape transitions were examined with regard to the solubilization of the poorly water-soluble drug indomethacin (IMC) in the nonionic surfactants heptaethylene oxide tetradecyl (C14E7) and hexadecyl (C16E7) ethers by means of a dynamic light scattering technique. The cloud points of the pure C14E7 and C16E7 micelles ranged from 58 to 62 degrees C and from 52.1 to 55.6 degrees C, respectively, at surfactant concentrations of 1 to 10 mM. The cloud points of IMC-solubilized micelles increased by approximately 1 to 5 degrees . The sizes of the pure C14E7 micelles were 4 to 14 nm at 20 to 40 degrees C at a concentration of 2 to 20 mM. The apparent hydrodynamic radius (R happ) of pure C16E7 micelles varied with temperature and concentration. C16E7 surfactant formed small spherical micelles at 20 and 25 degrees C at concentrations below 5 mM; the size of the micelles was approximately 5 nm. On the other hand, from 30 to 40 degrees C and at a higher concentration, C16E7 formed elongated cylindrical micelles, and these elongated micelles entangled or overlapped each other. The R happ of the IMC-solubilized C14E7 micelles at 20 to 40 degrees C and of C16E7 micelles at 20 degrees C increased compared to that of pure micelles. On the other hand, the cylindrical micelles of C16E7 decreased in size and turned into spherical ones because of the hydrophobicity between the micelles caused by solubilization of IMC. This phenomenon was confirmed by transmission electron microscope (TEM) images.  相似文献   

17.
The phase behavior of a mixture of poly(isoprene)-poly(oxyethylene) diblock copolymer (PI-PEO or C250EO70) and poly(oxyethylene) surfactant (C12EO3, C12EO5, C12EO6, C12EO7, and C12EO9) in water was investigated by phase study, small-angle X-ray scattering, and dynamic light scattering (DLS). The copolymer is not soluble in surfactant micellar cubic (I1), hexagonal (H1), and lamellar (Lalpha) liquid crystals, whereas an isotropic copolymer fluid phase coexists with these liquid crystals. Although the PI-PEO is relatively lipophilic, it increases the cloud temperatures of C12EO3-9 aqueous solutions at a relatively high PI-PEO content in the mixture. Most probably, in the copolymer-rich region, PI-PEO and C12EOn form a spherical composite micelle in which surfactant molecules are located at the interface and the PI chains form an oil pool inside. In the C12EO5/ and C12EO6/PI-PEO systems, one kind of micelles is produced in the wide range of mixing fraction, although macroscopic phase separation was observed within a few days after the sample preparation. On the other hand, small surfactant micelles coexist with copolymer giant micelles in C12EO7/ and C12EO9/PI-PEO aqueous solutions in the surfactant-rich region. The micellar shape and size are calculated using simple geometrical relations and compared with DLS data. Consequently, a large PI-PEO molecule is not soluble in surfactant bilayers (Lalpha phase), infinitely long rod micelles (H1 phase), and spherical micelles (I1 phase or hydrophilic spherical micelles) as a result of the packing constraint of the large PI chain. However, the copolymer is soluble in surfactant rod micelles (C12EO5 and C12EO6) because a rod-sphere transition of the surfactant micelles takes place and the long PI chains are incorporated inside the large spherical micelles.  相似文献   

18.
Shape, size, and internal structure of nonionic reverse micelle in styrene depending on surfactant chain length, concentration, temperature, and water addition have been investigated using a small-angle X-ray scattering (SAXS) technique. The generalized indirect Fourier transformation (GIFT) method has been employed to deduce real-space structural information. The consistency of the GIFT method has been tested by the geometrical model fittings, and the micellar aggregation number (N(agg)) has been determined. It was found that diglycerol monocaprate (C(10)G(2)), diglycerol monolaurate (C(12)G(2)), and diglycerol monomyristate (C(14)G(2)), spontaneously self-assemble into reverse micelles in organic solvent styrene under ambient conditions. The micellar size and the N(agg) decrease with an increase in surfactant chain length, a scenario that could be understood from the modification of the critical packing parameter (cpp). A clear picture of one-dimensional (1-D) micellar growth was observed with an increase in surfactant weight fraction (W(s)) in the C(10)G(2) system, which eventually formed rodlike micelles at W(s) ≥ 15%. On the other hand, micelles shrunk favoring a rod-to-sphere type transition upon heating. Reverse micelles swelled with water, forming a water pool at the micellar core; the size of water-incorporated reverse micelles was much bigger than that of the empty micelles. Model fittings showed that water addition not only increase the micellar size but also increase the N(agg). Zero-shear viscosity was found to decrease with surfactant chain but increase with W(s), supporting the results derived from SAXS.  相似文献   

19.
The interactions between an oxyphenylethylene-oxyethylene nonionic diblock copolymer with the anionic surfactant sodium dodecyl sulfate (SDS) have been studied in dilute aqueous solutions by static and dynamic light scattering (SLS and DLS, respectively), isothermal titration calorimetry (ITC), and 13C and self-diffusion nuclear magnetic resonance techniques. The studied copolymer, S20E67, where S denotes the hydrophobic styrene oxide unit and E the hydrophilic oxyethylene unit, forms micelles of 15.6 nm at 25 degrees C, whose core is formed by the styrene oxide chains surrounded by a water swollen polyoxyethylene corona. The S20E67/SDS system has been investigated at a copolymer concentration of 2.5 g dm(-3), for which the copolymer is fully micellized, and with varying surfactant concentration up to approximately 0.15 M. When SDS is added to the solution, two different types of complexes are observed at various surfactant concentrations. From SLS and DLS it can be seen that, at low SDS concentrations, a copolymer-rich surfactant mixed micelle or complex is formed after association of SDS molecules to block copolymer micelles. These interactions give rise to a strong decrease in both light scattering intensity and hydrodynamic radius of the mixed micelles, which has been ascribed to an effective reduction of the complex size, and also an effect arising from the increasing electrostatic repulsion of charged surfactant-copolymer micelles. At higher surfactant concentrations, the copolymer-rich surfactant micelles progressively are destroyed to give surfactant-rich-copolymer micelles, which would be formed by a surfactant micelle bound to one or very few copolymer unimers. ITC data seem to confirm the results of light scattering, showing the dehydration and rehydration processes accompanying the formation and subsequent destruction of the copolymer-rich surfactant mixed micelles. The extent of interaction between the copolymer and the surfactant is seen to involve as much as carbon 3 (C3) of the SDS molecule. Self-diffusion coefficients corroborated light scattering data.  相似文献   

20.
Association-dissociation equilibria and the static scattering function were formulated using precise thermodynamic functions for nonionic surfactant solutions including long, stiff, threadlike micelles. The present theory is applicable for micellar solutions with the surfactant concentration much higher than the critical micelle concentration and containing highly growing threadlike micelles. The scattering function formulated was compared with experimental light scattering data for aqueous solutions of a nonionic surfactant, penta(oxyethylene glycol) n-decyl ether (C12E5), at different surfactant concentrations and also temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号