首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray photoelectron spectroscopy was used to investigate ACr2S4 (, Zn, Mn, Fe, Fe:Cu) and BCr2Se4 (, Cu, Hg, Hg:Cu) single crystals. Well defined splitting of the Cr 2p core level has been found. The local magnetic moments of the Cr ions are responsible for the observed effect. Received 2 November 1999  相似文献   

2.
The electrical and magnetic properties of one-dimensional calcium iridium oxide Ca5Ir3O12 are investigated. A weak ferromagnetic transition has been found at 7.5 K through magnetic susceptibility measurements. At the same temperature, a λ-type specific heat anomaly has been observed. The effective magnetic moments in the paramagnetic temperature range and the magnetic entropy due to the magnetic transition indicates that the tetravalent and pentavalent Ir ions exist in the ratio of 1:2. Another λ-type anomaly has been observed at 105 K in the temperature dependence of the specific heat. The electrical conductivity shows one-dimensional Mott variable-range hopping conduction behavior.  相似文献   

3.
NaNiO2 has been studied by neutron-powder diffraction, magnetic susceptibility and submillimeter wave ESR. The monoclinic structure at room temperature is characterised by a ferrodistorsive orbital ordering due to the Jahn-Teller (JT) effect of the Ni3+ ions in the low spin state. NaNiO2 undergoes a structural transition at around 480 K, above which the orbital ordering disappears. The high temperature phase is rhombohedral with the layered -NaFeO2 structure ( space group). The magnetic susceptibility exhibits hysteresis and we observe a change of the Curie-Weiss law parameters above the JT transition. The anisotropy of the g-factor at 200 K can be attributed to the JT effect which favours the orbital occupation. Finally, the interplay between the magnetic and structural properties of NaNiO2 and Li1-xNi1+xO2 is discussed. Received 29 May 2000  相似文献   

4.
The system Cu2FeO2BO3 is an oxyborate belonging to the family of the ludwigites. In this paper we present AC susceptibility, magnetization measurements and M?ssbauer spectroscopy on this material which allows for a complete characterization of its complex magnetic behavior. We find an hierarchy of interactions which clearly defines three regimes with decreasing temperature. These are associated with, the freezing of the Fe moments, the antiferromagnetic ordering of the Cu sub-lattice and finally the coupling between both systems. Received 25 September 1998  相似文献   

5.
A comprehensive study of the relationship between the electronic specific heat coefficient () and the temperature square coefficient (A) of the electrical resistivity for a single, cubic, heavy fermion alloy system, UPt5-xAux is presented. In this alloy system, whose low temperature properties are consistent with the Fermi-liquid behavior, varies by more than a factor of 10 while the corresponding A coefficient changes by a factor larger than 200. A tracks changes in fairly well, but , postulated to have a universal value for heavy fermions, is not constant and varies from about 10-6 (x = 0, 0.5) to 10-5 cm (mol K/mJ)2 (x > 1.1), thus from a value typical of transition metals to that characteristic of other heavy fermion compounds. We have found a correlation between and magnetic characteristics such as the paramagnetic Curie-Weiss temperature and the low temperature magnetic susceptibility divided by . Received 29 January 1999  相似文献   

6.
X-ray absorption spectroscopy (XAS) and soft-X-ray magnetic circular dichroism (SXMCD) at the Mn L2,3-, Cr L2,3- and O-K edges of Sm0.5Ca0.5Mn1-xCrxO3 () bulk polycrystalline samples have been performed at T=20 K below the ferromagnetic Curie temperature. We show the existence of a magnetic sublattice on each of the probed cations. Considering an electronically phase-separated system, results are compared with magnetization and resistivity measurements and a tentative correlation with magnetoresistance properties on such doped compounds is discussed. Received 7 January 2000  相似文献   

7.
We present a systematic study of the structure, magnetization, resistivity, and Hall effect properties of pulsed laser deposited Fe- and Cu-codoped In2O3 and indium-tin-oxide (ITO) thin films. Both the films show a clear ferromagnetism and anomalous Hall effect at 300 K. The saturated magnetic moments are almost the same for the two samples, but their remanent moments Mr and coercive fields HC are quite different. Mr and HC values of ITO film are much smaller than that of In2O3. The ITO sample shows a typical semiconducting behavior in whole studied temperature range, while the In2O3 thin film is metallic in the temperature range between 147 and 285 K. Analysis of different conduction mechanisms suggest that charge carriers are not localized in the present films. The profile of the anomalous Hall effect vs. magnetic field was found to be identical to the magnetic hysteresis loops, indicating the possible intrinsic nature of ferromagnetism in the present samples.  相似文献   

8.
Theoretical studies of the temperature (T) dependence of magnetization of Gd13 clusters have been carried out within a classical Heisenberg model using Monte-Carlo simulations. It is shown that for a broad range of values of , defined as the ratio between competing ferro and anti-ferro magnetic couplings, the cluster magnetization increases with T in the low T region, as seen in experiment. The clusters are also shown to exhibit a wide distribution of moments at a given T, which broadens significantly with increasing T. It is suggested that this may affect the observed magnetic behavior of magnetic clusters in Stern-Gerlach experiments. Received 29 May 1999 and Received in final form 5 September 1999  相似文献   

9.
We analyze the stability of magnetic states obtained within the tight-binding model for cubooctahedral (Oh) and icosahedral (Ih) clusters of early 4d (Y, Zr, Nb, Mo, and Tc) transition metals. Several metastable magnetic clusters are identified which suggests the existence of multiple magnetic solutions in realistic systems. A bulk-like parabolic behavior is observed for the binding energy of Oh and Ih clusters as a function of the atomic number along the 4 d-series. The charge transfer on the central atom changes sign, while the average magnetic moments present an oscillatory behavior as a function of the number of d electrons in the cluster. Our results are in agreement with other theoretical calculations. Received: 20 November 1997 / Received in final form: 9 March 1998 / Accepted: 30 March 1998  相似文献   

10.
ZnFe2O4 nanoparticles with average grain size ranging from 40 to 60 nm behaving superparamagnetic at room temperature have been produced using a low-temperature solid-state reaction (LTSSR) method without ball-milling process. Abnormal magnetic properties such as S-shape hysteresis loops and non-zero magnetic moments were observed. ZnFe2O4 nanoparticles were also synthesized using a NaOH coprecipitation method and a PVA sol-gel method to study the relationship between the preparation processes and the magnetic properties. Spin-glass behavior was observed in the low temperature solid-state reaction produced Zn ferrite in the zero-field cooled (ZFC) measurement. Our work proves that the various preparation methods will to some extent determine the properties of magnetic nanoparticles.  相似文献   

11.
Neutron and electron diffraction, electrical transport and magnetic measurements have been carried out on a newly synthesized electron doped Sr1-xCe x MnO3 (x = 0.1, 0.2, 0.3 and 0.4) system. For x=0.1, while cooling, it undergoes a first-order metal-insulator transition at 315 K which is associated with a structural transition from cubic (Pm3m) to tetragonal (I4/mcm) due to Jahn-Teller ordering () which stabilizes a chain like (C-type) antiferromagnetic ground state with . The antiferromagnetic insulator state is insensitive to an applied magnetic field of 7 T. With increase of x, while the nuclear structure at room temperature for x=0.2 and 0.3 remains tetragonal, for x=0.4 it becomes orthorhombic (Imma) where the doping electrons seem to occupy mainly the d x2-y2 symmetry. Further, the JT distortion and the antiferromagnetic interactions decrease with doping and a small negative magnetoresistance appears for . Magnetic measurements show that the dilution of antiferromagnetic interaction results into a spin glass like behaviour at low temperature for the samples with x=0.3 and 0.4. This behaviour is in contrast with the CMR properties of calcium based electron doped systems and hole doped manganites. The stability of C-type antiferromagnetic ordering in the electron doped system with large A-site cationic size may be responsible for the absence of double exchange ferromagnetism and CMR effect. Received 10 September 1999  相似文献   

12.
The intermetallic compound Nd-Fe-Ti-N has been successfully synthesized by a mechanical alloying process. The structure and magnetic properties of the sample have been studied using X-ray diffraction and magnetic measurements. It is found that alloy exhibits a nanocrystalline ThMn12-type tetragonal structure with lattice parameters of a=0.8723 nm and c=0.4896 nm. The saturation magnetization MS and effective magnetic anisotropy Keff of the compound have been determined by investigating magnetization processes. The calculated results based on the law of approach to magnetic saturation have been successfully used to determine the constant Keff. The difference between observed and calculated values in magnetization is lower than 3%. Of all terms in the law of approach to saturation, it is the 1/H 2 term, which is attributed more to non-compensated anisotropy energy, that has the prevailing effect for the compound. The absorption of nitrogen is found to increase unit cell volume, MS and Keff. Received: 28 October 1996 / Revised: 14 March 1997 and 4 August 1997 / Accepted: 8 August 1997  相似文献   

13.
A near infrared diode laser spectrometer has been used for measurement of line shapes of the rotational transitions of the () overtone-combination band of acetylene perturbed by oxygen and air. Pressure-broadening coefficients and line strength parameters are extracted from least squares fitting of the spectra with Voigt profiles. A detailed calculation of pressure-broadening coefficients for the self, nitrogen and oxygen broadening cases has been performed by using semi-classical impact theory based on quadrupolar and dispersion interactions. The relative importance of the intermolecular interactions has been investigated and it is found that for these weak interaction cases dispersive terms have a dominant role in line broadening. This is more pronounced for the O2-broadening case. We have included all the non-resonant terms till convergence is achieved. The cutoff parameter b0 of the Anderson procedure has been determined separately for each non-resonant process. In order to include the orientation effect of the molecules at the moment of collision we have considered an average kinetic collision diameter which sets the lower limit of b0. This improves the result considerably and the calculated values are close to the observed results. The J-dependence of the half width is also reported and shows decrease for large J-values. Received 24 November 1999  相似文献   

14.
In this work, we report the theoretical and experimental investigations on the magnetic and magnetocaloric properties for Gd0.5Pr0.5Al2 compound in different magnetic fields. The magnetization features indicate that Gd0.5Pr0.5Al2 is ferrimagnetic at low temperatures. We also present data from X-ray magnetic circular dichroism (XMCD) experiments for this compound, with which we have confirmed that the magnetic moments of the Pr ions are antiparallel to the magnetic moments of the Gd ions. The magnetocaloric parameters, ΔTS and ΔST, were obtained from calorimetric data and both curves present normal and inverse magnetocaloric effect. A theoretical model for ferrimagnetic coupling, including the crystalline electrical field anisotropy, was used to describe the ΔTS and ΔST experimental results.  相似文献   

15.
The effect of Er impurities on the superconducting properties of an amorphous Zr3Rh alloy has been studied. The Er impurities are found to exhibit magnetic behavior characteristic of a free Er3+ ion in a weak crystal field. Magnetic ordering of the Er moments is observed to occur at a temperature TM which is proportional to the Er concentration. This ordering strongly influences superconductivity as evidenced by anomalous behavior in the concentration dependence of Tc. For concentrations near the critical Abrikosov-Gor'kov value, superconductivity appears to be induced by magnetic ordering. The superconducting critical field Hc2(T) is strongly effected by magnetic ordering and can be used to deduce information concerning the nature of the ordering. The results are analyzed in terms of theoretical models.  相似文献   

16.
The formation mechanism, geometric structures, and electronic properties of a metal-substituted fullerene C58Fe2 have been studied using frontier orbital theory (FOT) and density functional theory (DFT). FOT predicts that two Fe atoms prefer to substitute the two carbons of a [6,6] double bond of C60 yielding a structure denoted as C58Fe2-3, which is different from the two equivalent substitution sites, i.e., the sites on the opposite of C60 cage or in the nearest neighboring sites of a pentagonal ring for C58X2 (X=N and B), and also different from the cross sites of a hexagonal ring for C58Si2. Five possible structures of C58Fe2 are optimized using DFT to see whether FOT works. The DFT calculations support the prediction of FOT. The Mulliken charge of Fe atom in C58Fe2-3 shows that the two Fe atoms of C58Fe2-3 lose 0.70 electron to the carbons of the cage, and the net spin populations of Fe atom indicate that each Fe atom has 1.11 μB magnetic moments, while each of the four nearest neighboring carbons has magnetic moments. Thus, the two Fe atoms have ferromagnetic interaction with each other, and have weak antiferromagnetic interaction with their four nearest neighboring carbons, leaving 2.0 μB magnetic moments for the molecule.  相似文献   

17.
The structural and magnetic properties of Cr1+x(Se1−yTey)2 having a NiAs structure has been studied for (1+x)=1.27, 1.32 and 1.36 and y=0.75 by means of the Korringa-Kohn-Rostoker (KKR) band structure method. The sub-stoichiometry and the disorder on the chalcogenide sub-lattice has been treated by means of the coherent potential approximation (CPA) alloy theory. From total energy calculations a preferential site occupation on the Cr sub-lattice was found together with an antiparallel alignment of the magnetic moments on the two inequivalent Cr layers. The magnetic properties at finite temperature has been studied by means of Monte Carlo simulations on the basis of a classical Heisenberg Hamiltonian and the exchange coupling parameters calculated from first principles. This approach allowed to determine the critical temperature in good agreement with experiment.  相似文献   

18.
The electronic structure of the highly ordered alloy Cr3Co with the DO3 structure has been studied by FLAPW calculations. It is found that the ferrimagnetic state is stable and that the equilibrium lattice constant of Cr3Co equals 5.77 Å. A large peak in majority spin density of states (DOS) and an energy gap in minority spin DOS are observed at the Fermi level, which results in a high spin polarization of 90% in the ordered alloy Cr3Co. The total magnetic moment of Cr3Co is 3.12μB, which is close to the ideal value of 3μB derived from the Slater-Pauling curve. An antiparallel alignment between the moments on the Cr (A, C) sites and the Cr (B) sites is observed. Finally, the effect of lattice distortion on the electronic structure and on magnetic properties of Cr3Co compound is studied. A spin polarization higher than 80% can be obtained between 5.55 and 5.90 Å. With increasing lattice constant, the magnetic moments on the (A, C) sites increase and the moments on the (B, D) sites decrease. They compensate each other and make the total magnetic moment change only slightly.  相似文献   

19.
Magnetic properties of Co-doped wide-gap semiconductor SnO2 were studied theoretically by using the PPLCAO first-principles computational scheme. Since the carrier plays an important role on magnetic properties about diluted magnetic semiconductors (DMS) materials, we discuss the origin of magnetic moments and the magnetic ordering mechanism with different carrier concentration in Co-doped SnO2 based on calculated spin density distribution. It is found that, the RKKY interaction is dominated in the magnetic coupling in Co-doped SnO2.  相似文献   

20.
We report an investigation of magnetic resonance by ESR in oxygen-doped La2NiO emphasizing extensively for the first time the role of oxygen stoichiometry. The work is performed at room temperature and on powders with . At low field an hysteresis is detected between increasing and decreasing fields, it depends upon . The resonance lines have characteristic features of ferromagnetic resonance. The intensity () is used as an experimental parameter for investigating the effect of . It allows to built a diagram closely connected to the phase diagram . It suggests a ferromagnetic coupling depending upon . When the (average) structure is tetragonal the low intensity is due to a magnetic polaron of low resistivity. In ranges where a phase separation is detected, the ferromagnetic coupling has a structural origin (DM or local anisotropy) with apparently a strong influence on the electrical resistivity. Received: 3 November 1997 / Accepted: 23 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号