首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We employed tunable diode laser absorption spectroscopy to measure the line strength, the methane (CH4), ethane (C2H6) and the propane (C3H8) broadening coefficients for the 523–422 H2O transition at 3619.61 cm?1. Water amount fractions generated by a stable and accurate humidity transfer standard, traceable to the SI units via the German national humidity standard, were used to calibrate the spectroscopic line strength measurements. We focus on the traceability of the measured line data to the SI and on uncertainty assessments following the guidelines of the Guide to the Expression of Uncertainty in Measurement. We determined the line strength to be (8.42 ± 0.07)×10?20 cm?1/(cm?2 molecule) corresponding to a relative uncertainty of ±0.8%. To the best of our knowledge, we report the first methane, ethane and propane broadening coefficients of (8.037 ± 0.056)×10?5 cm?1/hPa, (9.077 ± 0.064)×10?5 cm?1/hPa and (10.469 ± 0.073)×10?5 cm?1/hPa for the 523–422 H2O transition at 3619.61 cm?1, respectively. The relative combined uncertainties of the stated CH4, C2H6 and C3H8 broadening coefficients are in the ±0.7% range.  相似文献   

2.
Polarization spectroscopy in the mid-infrared (IRPS) has been applied to the detection of acetylene molecules making use of the asymmetric C-H stretching vibration at around 3 μm. The infrared laser pulses were produced through difference frequency generation in a LiNbO3 crystal pumped by a Nd:YAG and dye laser system. By directly probing the ro-vibrational transitions with IRPS, sensitive detection of molecules with otherwise inaccessible electronic states was realized with high temporal and spatial resolution by using a pulsed laser and a cross-beam geometry. Detection sensitivities of 2 × 1013 molecules/cm3 (10 ppm in 70 mbar gas mixture) of C2H2 were achieved using the P(1 1) line of the (0 1 0(1 1)0)-(0 0 0 00 00) band. The dependence of the IRPS signal on the pump laser fluence, acetylene mole fraction, and buffer gas pressure of Ar, N2, H2, and CO2 has been studied experimentally. The investigation demonstrates the quantitative nature of IRPS for sensitive detection of polyatomic IR active molecules. In order to fully demonstrate the technique for combustion applications, nascent acetylene molecules were measured in a low pressure methane/oxygen flame.  相似文献   

3.
40 absolute line wavenumbers in the 3v 3 band of 12C16O2 between 6927 cm?1 and 6989 cm?1 and 626 absolute line wavenumbers in the near infrared absorption spectrum of 12C2H2 between 7060 cm?1 and 9900 cm?1 have been measured using high resolution Fourier transform spectroscopy. The calibration of the CO2 line wavenumbers relied on heterodyne frequencies available in the v 1 + v 3 band of 12C2H2 near 6556 cm?1. The absolute uncertainty of the calibrated CO2 line wavenumbers is estimated to 0.000 08 cm?1. The acetylene spectra were calibrated using heterodyne frequencies available in the 2—0 band of 12C16O and the line wavenumbers obtained in the 3v 3 band of 12C16O2. The absolute uncertainty of the calibrated acetylene line wavenumbers is estimated to range from 0.0003 cm?1 to 0.006 cm?1 for strong to very weak isolated lines. Comparison with absolute line wavenumbers obtained independently at JPL in the 3v 3 band of 12C2H2 near 9649 cm?1, calibrated using absolute wavenumbers available in the 2—0 and 3—0 (near 6350 cm?1) bands of 12C16O, shows very good agreement. Also, the vibration—rotation constants for the observed upper vibrational states of 12C2H2 were determined, but without accounting for the perturbations affecting these states.  相似文献   

4.
The development of a continuous wave, thermoelectrically cooled (TEC), distributed feedback diode laser-based spectroscopic trace-gas sensor for ultra-sensitive and selective ethane (C2H6) concentration measurements is reported. The sensor platform used tunable diode laser absorption spectroscopy (TDLAS) and wavelength modulation spectroscopy as the detection technique. TDLAS was performed using an ultra-compact 57.6 m effective optical path length innovative spherical multipass cell capable of 459 passes between two mirrors separated by 12.5 cm and optimized for the 2.5–4 μm range TEC mercury–cadmium–telluride detector. For an interference-free C2H6 absorption line located at 2,976.8 cm?1, a 1σ minimum detection limit of 740 pptv with a 1 s lock-in amplifier time constant was achieved.  相似文献   

5.
Acetylene (C2H2), as an important precursor for chemiluminescence species, is a key to understand, simulate and model the chemiluminescence and the related reaction paths. Hence we developed a high resolution spectrometer based on direct Tunable Diode Laser Absorption Spectroscopy (TDLAS) allowing the first quantitative, calibration-free and spatially resolved in situ C2H2 measurement in an atmospheric non-premixed counter-flow flame supported on a Tsuji burner. A fiber-coupled distributed feedback diode laser near 1535 nm was used to measure several absolute C2H2 concentration profiles (peak concentrations up to 9700 ppm) in a laminar non-premixed CH4/air flame (T up to 1950 K) supported on a modified Tsuji counter-flow burner with N2 purge slots to minimize end flames. We achieve a fractional optical resolution of up to 5×10?5 OD (1σ) in the flame, resulting in temperature-dependent acetylene detection limits for the P17e line at 6513 cm?1 of up to 2.1 ppm?m. Absolute C2H2 concentration profiles were obtained by translating the burner through the laser beam using a DC motor with 100 μm step widths. Intercomparisons of the experimental C2H2 profiles with simulations using our new hydrocarbon oxidation mechanisms show excellent agreement in position, shape and in the absolute C2H2 values.  相似文献   

6.
We report what we believe to be a novel demonstration of simultaneous detection of multiple trace gases by near-IR tunable diode laser photoacoustic spectroscopy using a cell containing a cantilever microphone. Simultaneous detection of carbon monoxide (CO), ethyne (C2H2), methane (CH4) and combined carbon monoxide/carbon dioxide (CO+CO2) in nitrogen-based gas mixtures was achieved by modulation frequency division multiplexing the outputs of four near-IR tunable diode lasers. Normalized noise-equivalent absorption coefficients of 3.4×10?9, 3.6×10?9 and 1.4×10?9 cm?1?W?Hz?1/2 were obtained for the simultaneous detection of CO, C2H2 and CH4 at atmospheric pressure. These corresponded to noise-equivalent detection limits of 249.6 ppmv (CO), 1.5 ppmv (C2H2) and 293.7 ppmv (CH4) respectively over a measurement period of 2.6 s at the relevant laser power. The performance of the system was not influenced by the number of lasers deployed, the main source of noise arising from ambient acoustic effects. The results confirm that small-volume photoacoustic cells can be used with low optical power tunable diode lasers for rapid simultaneous detection of trace gases with high sensitivity and specificity.  相似文献   

7.
Two-photon laser-induced fluorescence (LIF) of ammonia (NH3) with excitation of the C′-X transition at 304.8 nm and fluorescence detection in the 565 nm C′-A band has been investigated, targeting combustion diagnostics. The impact of laser irradiance, temperature, and pressure has been studied, and simulation of NH3-spectra, fitted to experimental data, facilitated interpretation of the results. The LIF-signal showed quadratic dependence on laser irradiance up to 2 GW/cm2. Stimulated emission, resulting in loss of excited molecules, is induced above 10 GW/cm2, i.e., above irradiances attainable for LIF imaging. Maximum LIF-signal was obtained for excitation at the 304.8 nm bandhead; however, lower temperature sensitivity over the range 400–700 K can be obtained probing lines around 304.9 nm. A decrease in fluorescence signal was observed with pressure up to 5 bar absolute and attributed to collisional quenching. A detection limit of 800 ppm, at signal-to-noise ratio 1.5, was identified for single-shot LIF imaging over an area of centimeter scale, whereas for single-point measurements, the technique shows potential for sub-ppm detection. Moreover, high-quality NH3-imaging has been achieved in laminar and turbulent premixed flames. Altogether, two-photon fluorescence provides a useful tool for imaging NH3-detection in combustion diagnostics.  相似文献   

8.
Sulfur dioxide (SO2) trace gas detection based on quartz-enhanced photoacoustic spectroscopy (QEPAS) using a continuous wave, distributed feedback quantum cascade laser operating at 7.24 μm was performed. Influence of water vapor addition on monitored QEPAS SO2 signal was also investigated. A normalized noise equivalent absorption coefficient of NNEA (1σ) = 1.21 × 10?8 cm?1 W Hz?1/2 was obtained for the ν 3 SO2 line centered at 1,380.93 cm?1 when the gas sample was moisturized with 2.3 % H2O. This corresponds to a minimum detection limit (1σ) of 63 parts per billion by volume for a 1 s lock-in time constant.  相似文献   

9.
A combination of optical feedback self-locking of a continuous-wave distributed feedback diode laser to a V-shaped high finesse cavity, laser phase modulation at a frequency equal to the free spectral range of the V-cavity and detection of the transmitted laser beam at this high modulation frequency is described for the possible application in cavity-enhanced absorption spectroscopy. In order to estimate the noise level of an absorbance baseline, the triplet of frequency modulated light, i.e. the central laser frequency and the two sidebands, were transmitted through both the V-cavity in open air and a 1.5-cm long optical cell placed behind the cavity output mirror and filled with acetylene (C2H2) at low pressure. The performance of the setup was evaluated from the measured relative intensity noise on the cavity output (normalised by the bandwidth) and the frequency modulation absorption signals induced by C2H2 absorption in the 1.5-cm cell. From these data, we estimate that the noise-equivalent absorption sensitivity of 2.1 × 10?11 cm?1 Hz?1/2—by a factor of 11.7 above the shot-noise limit—can be achieved for C2H2 absorption spectra extracted from the heterodyne beat signals recorded at the transmission maxima intensity peaks of the successive TEM00 resonances.  相似文献   

10.
The temporal variation of chemiluminescence emission from OH?(A2 Σ +) and CH?(A2 Δ) in reacting Ar-diluted H2/O2/CH4, C2H2/O2 and C2H2/N2O mixtures was studied in a shock tube for a wide temperature range at atmospheric pressures and various equivalence ratios. Time-resolved emission measurements were used to evaluate the relative importance of different reaction pathways. The main formation channel for OH? in hydrocarbon combustion was studied with CH4 as benchmark fuel. Three reaction pathways leading to CH? were studied with C2H2 as fuel. Based on well-validated ground-state chemistry models from literature, sub-mechanisms for OH? and CH? were developed. For the main OH?-forming reaction CH+O2=OH?+CO, a rate coefficient of k 2=(8.0±2.6)×1010 cm3?mol?1?s?1 was determined. For CH? formation, best agreement was achieved when incorporating reactions C2+OH=CH?+CO (k 5=2.0×1014 cm3?mol?1?s?1) and C2H+O=CH?+CO (k 6=3.6×1012exp(?10.9 kJ?mol?1/RT) cm3?mol?1?s?1) and neglecting the C2H+O2=CH?+CO2 reaction.  相似文献   

11.
A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm?1) and combination υ 1 + υ 3 band (~3,610 cm?1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm?1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm?1, paired with the R(28) line near 3,633.08 cm?1. This combination yields high temperature sensitivity (ΔE” = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600–1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.  相似文献   

12.
The effect of high-intensity femtosecond laser pulses (100–200 fs) in the near (0.8–1.8 μm) and medium (4.6–5.8 μm) IR ranges on the CF2HCl, CF3H, (CF3)2C=C=O, and C4F9COI molecules is examined. Irradiation of CF2HCl and CF3H molecules by 0.8-to 1.8-μm laser pulses with intensities of >40 TW/cm2 (>4 × 1013 W/cm2) makes them dissociate to yield CF3H and CF4, respectively. The key mechanism of the dissociation of these molecules is field ionization and fragmentation. The excitation of the stretching vibrations of the C=O bond in the (CF3)2C=C=O and C4F9COI molecules by 4.5-to 5.8-μm femtosecond pulses produced no detectable dissociation up to a fluence of ∼0.5 J/cm2 (or a intensity of ∼2.5 TW/cm2). Probable explanations of this observation are discussed. Original Russian Text ? V.M. Apatin, V.O. Kompanets, V.B. Laptev, Yu.A. Matveets, E.A. Ryabov, S.V. Chekalin, V.S. Letokhov, 2007, published in Khimicheskaya Fizika, 2007, Vol. 26, No. 4, pp. 18–25.  相似文献   

13.
The absorption line profiles of water vapor in binary mixtures with diatomic molecules H2, N2, and O2 have been recorded on a diode laser spectrometer. The profiles of several lines of the 101 band have been studied near 1.39 μm with a spectral resolution of 3 × 10?4 cm?1. The pressure of the binary mixtures was varied from 0 to 200 Torr. The experimental data obtained have been used to test the Voigt, Rautian-Sobel’man, and Galatry theoretical models of a spectral line profile. The coefficients of collisional narrowing have been determined from the results of the fitting.  相似文献   

14.
In the present work, the effect of glycerol and 1-butyl-3-methylimidazolium chloride (BmImCl) on the conductivity and dielectric properties of potato starch doped with magnesium acetate, Mg(C2H3O2)2-based electrolytes is studied. The electrolytes are prepared via solution cast technique. The interaction between the materials is proven by Fourier transform infrared (FTIR) analysis. Electrolyte with 20 wt.% Mg(C2H3O2)2 exhibits a room temperature conductivity of (2.44 ± 0.37) × 10?8 S cm?1. The addition of 30 wt.% glycerol to the best polymer-salt composition has further enhanced the conductivity to (2.60 ± 0.42) × 10?6 S cm?1. A conductivity of (1.12 ± 0.08) × 10?5 S cm?1 has been achieved when 18 wt.% BmImCl is added to the best polymer-salt-plasticizer composition. From the loss tangent (tan δ) plot, the relaxation time (t r) for selected electrolytes is determined. From transference number measurements, ions are found to be the dominant charge carriers.  相似文献   

15.
The absorption spectrum of acetylene has been recorded at room temperature (297 K) using high-sensitivity cavity ring-down spectroscopy (αmin ~ 5×10?11 cm?1) in the 5851 and 6341 cm?1 interval corresponding to a region of very weak absorption. A list of about 10,700 absorption features with estimated absolute line intensities was constructed. The smallest intensities are of the order of 5×10?29 cm molecule?1. The line list includes about 2500 absorption lines of ethylene present at the ppm level in the acetylene sample and identified on the basis of a high-resolution Fourier transform spectrum specifically recorded. A total of more than 2700 lines of 12C2H2 were rovibrationally assigned in comparison with accurate predictions provided by a global effective operator model. Overall, the present effort adds about 2260 new assignments to the set of about 500 assigned transitions available in the literature. The new assignments correspond to 45 new bands and 17 already-known bands, for which additional J lines were assigned. Spectroscopic parameters were derived for the upper vibrational levels from a band by band fit of the line positions (typical root mean square deviation values are of the order of 0.001 cm?1). A few of the analysed bands were found to be affected by rovibrational perturbations, which are discussed. The new data will be valuable to refine the parameters of the global effective Hamiltonian and dipole moments of 12C2H2.  相似文献   

16.
A diode laser spectrometer that was operated in sweep integration mode was used to measure individual line strengths for 17 R-branch transitions of the (ν4 + ν5)0 combination band of 12C2H2 at 7.4 μm. Analysis of these results gives a band strength Sv = 64.4 ± 2.0 cm?2 atm?1 at 296 K. Line-broadening parameters for several of these transitions were determined by using both N2 and He as broadening gases.  相似文献   

17.
Quantitative measurements of acetylene (C2H2) molecules as a combustion intermediate species in a series of rich premixed C2H4/air flames were non-intrusively performed, spatially resolved, using mid-infrared polarization spectroscopy (IRPS), by probing its fundamental ro-vibrational transitions. The flat sooty C2H4/air premixed flames with different equivalence ratios varying from 1.25 to 2.50 were produced on a 6 cm diameter porous-plug McKenna type burner at atmospheric pressure, and all measurements were performed at a height of 8.5 mm above the burner surface. IRPS excitation scans in different flame conditions were performed and rotational line-resolved spectra were recorded. Spectral features of acetylene molecules were readily recognized in the spectral ranges selected, with special attention to avoid the spectral interference from the large amount of coexisting hot water and other hydrocarbon molecules. On-line calibration of the optical system was performed in a laminar C2H2/N2 gas flow at ambient conditions. Using the flame temperatures measured by coherent anti-Stokes Raman spectroscopy in a previous work, C2H2 mole fractions in different flames were evaluated with collision effects and spectral overlap between molecular line and laser source being analyzed and taken into account. C2H2 IRPS signals in two different buffering gases, N2 and CO2, had been investigated in a tube furnace in order to estimate the spectral overlap coefficients and collision effects at different temperatures. The soot-volume fractions (SVF) in the studied flames were measured using a He–Ne laser-extinction method, and no obvious degrading of the IRPS technique due to the sooty environment has been observed in the flame with SVF up to ~2×10?7. With the increase of flame equivalence ratios not only the SVF but also the C2H2 mole fractions increased.  相似文献   

18.
Ion-molecular interactions in the HCl-EtOH-H2O system are studied by means of multiple frustrated total internal reflection IR spectroscopy over a wide range of concentrations of the components. It is demonstrated that, in the investigated solutions, the acid is fully bound into ions and uncharged complexes formed by strong symmetric or quasi-symmetric H-bonds. There is a competition between H2O and EtOH molecules during the formation of the (H5C2(H)O…H…O(H)C2H5)+, (H2O…H…OH2)+, and (H2O…H…O(H)C2H5)+ proton disolvates. In dilute solutions of HCl in 2: 1 and 1: 1 EtOH-H2O mixtures, (H2O…H…OH2)+ proton dihydrates are mainly formed, whereas in concentrated HCl solutions, under conditions of a partial solvation of ions by solvent molecules, predominantly (H2O…H…O(H)C2H5)+ mixed proton disolvates arise. In concentrated solutions of HCl in EtOH with low water content, the acid is partially bound into (H5C2(H)O…H+…Cl?) uncharged complexes with the participation of the Cl? anion.  相似文献   

19.
The inelastic neutron scattering spectra of C2H2 and C2D2 adsorbed on a Ag+ exchanged 13X zeolite (0–800 cm?1) and of C2H2 on the Na+ form (0–300 cm?1) have been obtained. For the Na-13X system no distinct vibrational modes were observed, however for the Ag-13X systems the low frequency intramolecular modes of the adsorbed gas and some of the vibrations of the adsorbed gas relative to the surface have been assigned. From the deuteration shifts it appears that C2H2 and C2D2, adsorbed on Ag-13X, are non-linear.  相似文献   

20.
Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressure; the spectral resolution was 0.046 cm?1 FWHM. Measured H2O line intensities range from 7 × 10?25 to 7 × 10?22 cm?1/molecules/cm2. H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5 cm?1/atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm?1/atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of mainly lines of the 300-000 band are much larger than expected from prior computations, in some cases by over ab order if magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号