首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Polarized spectroscopic properties related to 1.07 μm laser operation of a 1.8 at.% Nd3+:LaBO2MoO4 crystal grown by the Czochralski method were investigated at room temperature. Using a 2.2-mm-thick, Z-cut Nd3+:LaBO2MoO4 crystal as gain medium, orthogonally polarized dual-wavelength laser at 1,068 and 1,074 nm was first realized in a plano-concave resonator end-pumped by a quasi-continuous-wave 795 nm diode laser. A total output peak power of 1.2 W with slope efficiency of 26 % around 1.07 μm was obtained. The influences of resonator length and pump power on output laser wavelength were also investigated.  相似文献   

2.
A Nd3+:Na2La4(WO4)7 crystal with dimensions of ? 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10?5 K?1 along c-axis and 1.23 × 10?5 K?1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd–Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10?20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10?20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10?20 cm2 for σ-polarization and 2.67 × 10?20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.  相似文献   

3.
A Pr3+:KLu(WO4)2 crystal with dimension of 30 × 30 × 15 mm3 was grown in the K2W2O7 flux. A slice was cut from the crystal, and the polarized absorption and fluorescence spectra were measured at room temperature. Based on the J-O theory, the oscillator intensity parameters Ω t (t = 2, 4, 6), spontaneous emission probabilities and branch ratios were estimated and good results had been obtained. Furthermore, the crystal has a relatively large emission cross-section in the region of 615–630 nm with the highest value of 14.5 × 10?20 cm2, which indicates that the crystal is good for the application in red emission laser. The emission decay time for 1D2 and 3P0 multiplets was discussed. By adapting the I-H model to fit the emission decay curves, the lifetime for 1D2 at 607 nm and 3P0 at 615 nm are 19.72 μs and 8.95 μs, respectively. Then the corresponding fluorescence quantum efficiencies of the two multiplets reach 83.7 % and 87.9 %, respectively. All the studies illustrate that this crystal is potential in red emission laser application.  相似文献   

4.
We report on studies of changes in the emission spectra (excited at 808 nm) of the Yb-doped Ca4NdO(BO3)3 single crystals due to the photothermal effects caused by the pulsed Nd:YAG laser. Increase of the sample's surface temperature after laser treatment leads to significant enhancement of the 1040 to 1060 nm emission (ascribed to the Nd3+ 4F3/2 → 4I9/2, 4I11/2 transitions) and simultaneous decrease of the 975 to 1050 nm emission (corresponding to the Yb3+ 2F5/2 → 2F7/2 transition). We explain such an increase of the Nd3+ luminescence by thermally activated Yb3+ → Nd3+ energy transfer.  相似文献   

5.
The phenomenon of frequency upconversion (UC) is observed in Er3+:Yb3+:SrAl2O4 powders prepared by combustion synthesis. Strong UC emission at the green (bands peaked at 521, 538, 547, and 562 nm) and weak UC emission at the red (bands peaked at 659 and 682 nm) corresponding to 4f–4f transitions of Er3+ were observed when the samples were irradiated with near-infrared laser excitation at ~980 nm. Saturation of UC emission is observed for concentrations of 1.5 wt.% of Er3+ and 1.5 wt.% of Yb3+. The green-to-red intensity ratio, on the other hand, increases linearly with Er3+ concentration (Er3+ concentration varying from 0.5 to 1.5 wt.%) while keeping Yb3+ concentration fixed (at 1.5 wt.%). The green UC decay time was measured and Er3+–Er3+ interaction was suggested as a possible mechanism to explain the luminescence quenching effect observed.  相似文献   

6.
We report on diode-pumped laser operation of Pr3+,Mg2+:SrAl12O19 at lasing wavelengths of λ L = 724.4 nm, λ L = 643.5 nm, and λ L = 622.8 nm. Furthermore, the laser threshold could be reached in the green spectral range. By pumping the crystal longitudinally from each side with two polarization beam combined InGaN laser diodes, a total pump power of ≈4 W was available. In the deep red spectral range, a maximum output power of 564 mW was achieved with a maximum slope efficiency of 50 % with respect to the absorbed pump power. The maximum possible internal losses were estimated to ≈1 %. Beam quality factors M 2 were in the range of 1.2–1.5.  相似文献   

7.
The continuous-wave high efficiency laser emission of Nd:YVO4 at the fundamental wavelength of 914 nm and its 457 nm second harmonic obtained by intracavity frequency doubling with an LBO nonlinear crystal is investigated under pumping by diode laser at 880 nm into emitting level 4F3/2. 6.5 W at 457 nm with M 2=1.8 was obtained from a 5-mm-thick 0.4 at.% Nd:YVO4 laser medium and a 15-mm-long LBO nonlinear crystal in a Z-type cavity for 18.6 W absorbed pump power. An optical-to-optical efficiency with respect to the absorbed pump power was 0.35. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing level 4F5/2, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

8.
YAlO3: Sm3+ phosphor has been synthesized by the solid state reaction method with calcium flouride used as a flux. The resulting YAlO3: Sm3+ phosphor was characterized by X-ray diffraction (XRD) technique, Fourier transmission infrared spectroscopy (FTIR), photoluminescence . . PL excitation spectrum was found at 254,332,380,400,407, 603 and 713 nm. Under excitation of UV(713 nm) YAlO3: Sm3+ (0–3 %) broad band emission were observed from 400 to 790 nm with a maximum around 713 nm of YAlO3 host lattice accompanied by weak emission of Sm3+ (4G5/26H5/2, 6H7/2,6H9/2) transitions. The results of the XRD show that obtained YAlO3: Sm3+ phosphor has a orthorhombic structure. The study suggested that Sm3+ doped phosphors are potential luminescence material for laser diode pumping and inorganic scintillators.  相似文献   

9.
This paper deals with the preparation and optical analysis of Er3+ (0.2 mol%) boro-fluoro-phosphate glasses in the following glass compositions:
  • Series A: 69.8 B2O3–10 P2O5–10(ZnO/CdO/TeO2)–10 AlF3

  • Series B: 69.8 B2O3–10 P2O5–10(ZnO/CdO/TeO2)–10 LiF

Measured Vis-NIR absorption spectra of Er3+:boro-fluoro-phosphate glasses have revealed nine absorption bands at 377 nm, 405 nm, 450 nm, 486 nm, 519 nm, 543 nm, 649 nm, 973 nm and 1529 nm, which correspond with the transitions of 4I15/2 → 4G11/2, (2G9/2,4H9/2), 4F5/2, 4F7/2, 2H11/2, 4S3/2, 4F9/2, 4I11/2, and 4I13/2, respectively. With an excitation at λ exci = 375 nm, a bright green emission (4S3/2 → 4I15/2) at 547 nm has been observed from these erbium glasses. Judd–Ofelt characteristic intensity Ωλ (λ = 2, 4, 6) parameters are obtained from the absorption spectra, and these results were used to compute the radiative properties of Er3+:boro-fluoro-phosphate glasses. The NIR emission (4I13/2 → 4I15/2) at 1547 nm from these glasses was measured with an Ar+ laser (514.5 nm) as an excitation source.  相似文献   

10.
Biocompatible upconversion nanoparticles with multifunctional properties can serve as potential nanoprobes for multimodal imaging. Herein, we report an upconversion nanocrystal based on lanthanum fluoride which is developed to address the imaging modalities, upconversion luminescence imaging and magnetic resonance imaging (MRI). Lanthanide ions (Yb3+ and Ho3+) doped LaF3 nanocrystals (LaF3 Yb3+/Ho3+) are fabricated through a rapid microwave-assisted synthesis. The hexagonal phase LaF3 nanocrystals exhibit nearly spherical morphology with average diameter of 9.8 nm. The inductively coupled plasma mass spectrometry (ICP-MS) analysis estimated the doping concentration of Yb3+ and Ho3+ as 3.99 and 0.41%, respectively. The nanocrystals show upconversion luminescence when irradiated with near-infrared (NIR) photons of wavelength 980 nm. The emission spectrum consists of bands centred at 542, 645 and 658 nm. The stronger green emission at 542 nm and the weak red emissions at 645 and 658 nm are assigned to 5S2 → 5I8 and 5F5 → 5I8 transitions of Ho3+, respectively. The pump power dependence of luminescence intensity confirmed the two-photon upconversion process. The nanocrystals exhibit paramagnetism due to the presence of lanthanide ion dopant Ho3+ and the magnetization is 19.81 emu/g at room temperature. The nanocrystals exhibit a longitudinal relaxivity (r 1) of 0.12 s?1 mM?1 and transverse relaxivity (r 2) of 28.18 s?1 mM?1, which makes the system suitable for developing T2 MRI contrast agents based on holmium. The LaF3 Yb3+/Ho3+ nanocrystals are surface modified by PEGylation to improve biocompatibility and enhance further functionalisation. The PEGylated nanocrystals are found to be non-toxic up to 50 μg/mL for 48 h of incubation, which is confirmed by the MTT assay as well as morphological studies in HeLa cells. The upconversion luminescence and magnetism together with biocompatibility enables the adaptability of the present system as a nanoprobe for potential bimodal imaging.  相似文献   

11.
KY3F10:Ho3+ thin films were deposited by a pulsed laser deposition technique with Nd–YAG laser radiation (λ = 266 nm) on (100) silicon substrate. The XRD and FE-SEM results show improved crystalline structure for the film deposited at a pressure of 1 Torr. The AFM results show that the RMS roughness of the films increases with rise in argon gas pressure. The EDS elemental mapping shows Y-excess for all the films deposited under all pressures, and this is attributed to its higher mass and low volatility as compared to K and F. XPS analysis further confirmed Y-excess in the deposited films. Green PL emission at 540 nm was investigated at three main excitation wavelengths, namely 362, 416 and 454 nm. The PL emission peaks increase with rise in background argon gas pressure for all excitation wavelengths. The highest PL intensity occurred at excitation of 454 nm for all the thin films. In addition, faint red (near infrared) emission was observed at 750 nm for all the excitations. The green emission at 540 nm is ascribed to the 5F45I8 and 5S25I8 transitions, and the faint red emission at 750 nm is due to the 5F45I7 and 5S25I7 transitions of Ho3+.  相似文献   

12.
Yb3+-Tm3+ co-doped up-conversion powder phosphors using Zn(AlxGa1-x)2O4 (ZAGO) as the host materials were synthesized via solid-state reaction successfully. In addition, the morphology, structural characterization and up-conversion luminescent properties were all investigated by scanning electron microscope (SEM), x-ray diffraction (XRD) and fluorescence spectrophotometer (F-7000), respectively. Under the excitation of a 980 nm laser, all as-prepared powders can carry out blue emission at about 477 nm (corresponding to 1G4 → 3H6 transition of Tm3+ ions), and red emission at about 691 nm (attributed to 3F3 → 3H6 transition of Tm3+ ions). Also, the influence of doping Al3+ ions were investigated. In brief, the doping of Al3+ ions has no effect on the position of emission peak. Howbeit the up-conversion efficiency and intensity of ZAGO:Yb,Tm phosphors are stronger than ZGO:Yb,Tm and ZAO:Yb,Tm phosphors, while the crystallinity is the opposite. More particularly, all as-prepared powder phosphors emit strong luminescence, which is observable by the naked eye, demonstrating the potential applications in luminous paint, luminescent dye, etc.  相似文献   

13.
Fe2+-doped fluorophosphate glass (FEFG), a new color-separation material, is prepared by a melt-quenching method. The spectroscopic and laser-induced damage (LID) properties of FEFG are investigated by transmittance spectroscopy, LID tests, scanning electron microscopy, and Raman spectroscopy. Results show that the sample has intensive absorption (>85 %) at 1,053 nm and high transmittance (~86.5 %) at 351 nm after introducing 0.3 wt% Fe2O3. The LID thresholds of 0.3 wt% Fe2O3-doped FEFG sample irradiated by 351- and 1,053-nm lasers with 8 ns pulse width are 4.5 and 36.0 J/cm2, respectively. Thus, FEFG has laser-separation ability and can resist nanosecond laser irradiation, indicating that FEFG is a potential color-separation material for high-power lasers.  相似文献   

14.
The efficiency of upconversion fluorescence for Er3+ and Yb3+ codoped into NaYF4 powder crystals is investigated. The dependence of Er3+ green (540 nm) and red (660 nm) upconversion fluorescence intensities on laser excitation intensity and the ratio of the green and red fluorescence intensities respectively under 355‐nm and 936‐nm excitations have been measured and analyzed in terms of radiative and nonradiative relaxation mechanisms. It is shown that the intensity of both the green and red upconversion fluorescence bands is affected at high pumping intensities by a low‐lying state acting as a bottleneck, with the red fluorescence less affected than the green. In addition to two‐photon, two‐step excitation and energy transfer processes, nonlinear optical coupling mechanisms of avalanche processes appear responsible for reducing the bottleneck saturation of the red upconversion fluorescence.  相似文献   

15.
A bulk crystal of Yb:Sc2SiO5 (Yb:SSO) with favorable thermal properties was successfully obtained by the Czochralski method. The energy level diagrams for Yb:SSO crystal were determined by optical spectroscopic analysis and semi-empirical crystal-field calculations using the simple overlap model. The full width at half maximum of the absorption band centering at 976 nm was calculated to be 24 nm with a peak absorption cross-section of 9.2×10-21 cm2. The largest ground-state splitting of Yb3+ ions is up to 1027 cm-1 in a SSO crystal host. Efficient diode-pumped laser performance of Yb:SSO was primarily demonstrated with a slope efficiency of 45% and output power of 3.55 W.  相似文献   

16.
We present a high-efficiency Nd: LiYF4 (Nd:YLF) laser operating at 1321 nm pumped directly into the emitting level, 4F3/2. The linear polarization of the pump diode laser was maintained by a short fiber. At the absorbed pump power of 7.3 W, as high as 3.6 W of continuous-wave output power at 1321 nm is achieved. The slope efficiency with respect to the absorbed pump power was 0.52. To the best of our knowledge, this is the first demonstration of such a laser system. Comparative results obtained for the pump with a diode laser at 806 nm, into the highly absorbing 4F5/2 level, are given in order to prove the advantages of 880 nm wavelength pumping.  相似文献   

17.
Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800°C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV–Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer’s method and Williamson–Hall plots and are found to be in the ranges 40–60 nm and 30–80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at ~590, 612 and 625 nm, which are due to the transitions 5D07F0, 5D07F2 and 5D07F3 of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s2→6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380°C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.  相似文献   

18.
The basic performance characteristics of a Ho 3+-doped silica fibre laser that operates in a single transverse mode at ~2.1 µm and is pumped with the 1100-nm output from a free-running Yb 3+-doped silica fibre laser are presented. We measure a maximum slope efficiency (with respect to launched pump power) of 35% and we generate a maximum output power of 2.7 W at an optical-to-optical efficiency of 18% with respect to the incident pump power. The wavelength of the output is length tuned from 2090 nm to 2100 nm when the a absL product varies from 1.2 to 2.7. The use of the free-running output from a Yb 3+-doped silica fibre laser to pump the Ho 3+-doped silica fibre laser is very convenient and allows significant scaling of the output power.  相似文献   

19.
An erbium doped K0.603Li0.397Ta0.428Nb0.572O3 single crystal was grown by the step-cooling technique. The crystal has a tetragonal tungsten bronze-type structure at room temperature with a Curie temperature of 303°C. There are Er ions characteristic absorption bands around 449, 485, 521, 550, and 652 nm in the visible absorption spectrum. Upconversion fluorescence spectra and power dependence centered at 527 nm, 548 nm, and 660 nm under 975 nm excitation were measured at room temperature. Decay lifetimes of the 548 nm and 660 nm emission bands are 281 μs and 420 μs, respectively. The lifetime of the 548 nm emission corresponding to the transition of ?4 S 3/24 I 15/2 is ten times the lifetime of the same transition of Er3+ in LiNbO3 crystal and twice in KYb(WO4)2 crystal. The crystal might become a promising upconversion laser material. The upconversion mechanism of Er3+ in the sample was discussed based on decay curves and pump power dependence analyses in this work.  相似文献   

20.
To date increasing the output power of Nd:YAG lasers operating on the three-level 4F3/24I9/2 transition has been restricted by detrimental thermal effects in the gain medium. Using a double-clad planar waveguide, an efficient 946 nm laser has been demonstrated that produced 35 W of output power with corresponding slope and optical-to-optical conversion efficiencies of 56% and 50%, respectively. Performance and further power-scaling possibilities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号