首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let x be a complex random variable such that \( {\mathbf{E}}x = 0,\,{\mathbf{E}}{\left| x \right|^2} = 1 \), and \( {\mathbf{E}}{\left| x \right|^4} < \infty \). Let \( {x_{ij}},i,j \in \left\{ {1,2, \ldots } \right\} \), be independent copies of x. Let \( {\mathbf{X}} = \left( {{N^{ - 1/2}}{x_{ij}}} \right) \), 1≤i,jN, be a random matrix. Writing X ? for the adjoint matrix of X, consider the product X m X ?m with some m ∈{1,2,...}. The matrix X m X ?m is Hermitian positive semidefinite. Let λ12,...,λ N be eigenvalues of X m X ?m (or squared singular values of the matrix X m ). In this paper, we find the asymptotic distribution function \( {G^{(m)}}(x) = {\lim_{N \to \infty }}{\mathbf{E}}F_N^{(m)}(x) \) of the empirical distribution function \( F_N^{(m)}(x) = {N^{ - 1}}\sum\nolimits_{k = 1}^N {\mathbb{I}\left\{ {{\lambda_k} \leqslant x} \right\}} \), where \( \mathbb{I}\left\{ A \right\} \) stands for the indicator function of an event A. With m=1, our result turns to a well-known result of Marchenko and Pastur [V. Marchenko and L. Pastur, The eigenvalue distribution in some ensembles of random matrices, Math. USSR Sb., 1:457–483, 1967].  相似文献   

2.
Let \({\mathbb {F}}_q\) be a finite field with q elements such that \(l^v||(q^t-1)\) and \(\gcd (l,q(q-1))=1\), where lt are primes and v is a positive integer. In this paper, we give all primitive idempotents in a ring \(\mathbb F_q[x]/\langle x^{l^m}-a\rangle \) for \(a\in {\mathbb {F}}_q^*\). Specially for \(t=2\), we give the weight distributions of all irreducible constacyclic codes and their dual codes of length \(l^m\) over \({\mathbb {F}}_q\).  相似文献   

3.
Let ξ ( t)=(ξ 1(t),…,ξ d (t)) be a Gaussian stationary vector process. Let \(g:{\mathbb {R}}^{d}\rightarrow {\mathbb {R}}\) be a homogeneous function. We study probabilities of large extrema of the Gaussian chaos process g(ξ(t)). Important examples include \(g(\mathbf {\boldsymbol {\xi }}(t))={\prod }_{i=1}^{d}\xi _{i}(t)\) and \(g(\mathbf {\boldsymbol {\xi }}(t))={\sum }_{i=1}^{d}a_{i}{\xi _{i}^{2}}(t)\). We review existing results partially obtained in collaboration with E. Hashorva, D. Korshunov, and A. Zhdanov. We also present the principal methods of our investigations which are the Laplace asymptotic method and other asymptotic methods for probabilities of high excursions of Gaussian vector process’ trajectories.  相似文献   

4.
We consider the Anderson polymer partition function
$$\begin{aligned} u(t):=\mathbb {E}^X\left[ e^{\int _0^t \mathrm {d}B^{X(s)}_s}\right] \,, \end{aligned}$$
where \(\{B^{x}_t\,;\, t\ge 0\}_{x\in \mathbb {Z}^d}\) is a family of independent fractional Brownian motions all with Hurst parameter \(H\in (0,1)\), and \(\{X(t)\}_{t\in \mathbb {R}^{\ge 0}}\) is a continuous-time simple symmetric random walk on \(\mathbb {Z}^d\) with jump rate \(\kappa \) and started from the origin. \(\mathbb {E}^X\) is the expectation with respect to this random walk. We prove that when \(H\le 1/2\), the function u(t) almost surely grows asymptotically like \(e^{\lambda t}\), where \(\lambda >0\) is a deterministic number. More precisely, we show that as t approaches \(+\infty \), the expression \(\{\frac{1}{t}\log u(t)\}_{t\in \mathbb {R}^{>0}}\) converges both almost surely and in the \(\hbox {L}^1\) sense to some positive deterministic number \(\lambda \). For \(H>1/2\), we first show that \(\lim _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) exists both almost surely and in the \(\hbox {L}^1\) sense and equals a strictly positive deterministic number (possibly \(+\infty \)); hence, almost surely u(t) grows asymptotically at least like \(e^{\alpha t}\) for some deterministic constant \(\alpha >0\). On the other hand, we also show that almost surely and in the \(\hbox {L}^1\) sense, \(\limsup _{t\rightarrow \infty } \frac{1}{t\sqrt{\log t}}\log u(t)\) is a deterministic finite real number (possibly zero), hence proving that almost surely u(t) grows asymptotically at most like \(e^{\beta t\sqrt{\log t}}\) for some deterministic positive constant \(\beta \). Finally, for \(H>1/2\) when \(\mathbb {Z}^d\) is replaced by a circle endowed with a Hölder continuous covariance function, we show that \(\limsup _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) is a deterministic finite positive real number, hence proving that almost surely u(t) grows asymptotically at most like \(e^{c t}\) for some deterministic positive constant c.
  相似文献   

5.
Damien Roy 《Acta Mathematica》2011,206(2):325-362
Let \( \gamma = \frac{1}{2}\left( {1 + \sqrt {5} } \right) \) denote the golden ratio. H. Davenport and W. M. Schmidt showed in 1969 that, for each non-quadratic irrational real number ξ, there exists a constant c > 0 with the property that, for arbitrarily large values of X, the inequalities\( \left| {{x_0}} \right| \leqslant X,\,\,\,\left| {{x_0}\xi - {x_1}} \right| \leqslant c{X^{{{{ - 1}} \left/ {\gamma } \right.}}}\,\,\,{\text{and}}\,\,\,\left| {{x_0}{\xi^2} - {x_2}} \right| \leqslant c{X^{{{{ - 1}} \left/ {\gamma } \right.}}} \)admit no non-zero solution \( \left( {{x_0},{x_1},{x_2}} \right) \in {\mathbb{Z}^3} \). Their result is best possible in the sense that, conversely, there are countably many non-quadratic irrational real numbers ξ such that, for a larger value of c, the same inequalities admit a non-zero integer solution for each X ≥ 1. Such extremal numbers are transcendental and their set is stable under the action of \( {\text{G}}{{\text{L}}_2}\left( \mathbb{Z} \right) \) on \( \mathbb{R}\backslash \mathbb{Q} \) by linear fractional transformations. In this paper, it is shown that there exist extremal numbers ξ for which the Lagrange constant ν(ξ) = liminf q→∞ q||qξ|| is \( \frac{1}{3} \), the largest possible value for a non-quadratic number, and that there is a natural bijection between the \( {\text{G}}{{\text{L}}_2}\left( \mathbb{Z} \right) \)-equivalence classes of such numbers and the non-trivial solutions of Markoff’s equation.  相似文献   

6.
In this paper, we study the harmonic equation involving subcritical exponent \((P_{\varepsilon })\): \( \Delta u = 0 \), in \(\mathbb {B}^n\) and \(\displaystyle \frac{\partial u}{\partial \nu } + \displaystyle \frac{n-2}{2}u = \displaystyle \frac{n-2}{2} K u^{\frac{n}{n-2}-\varepsilon }\) on \( \mathbb {S}^{n-1}\) where \(\mathbb {B}^n \) is the unit ball in \(\mathbb {R}^n\), \(n\ge 5\) with Euclidean metric \(g_0\), \(\partial \mathbb {B}^n = \mathbb {S}^{n-1}\) is its boundary, K is a function on \(\mathbb {S}^{n-1}\) and \(\varepsilon \) is a small positive parameter. We construct solutions of the subcritical equation \((P_{\varepsilon })\) which blow up at two different critical points of K. Furthermore, we construct solutions of \((P_{\varepsilon })\) which have two bubbles and blow up at the same critical point of K.  相似文献   

7.
Let K be a compact set in \( {{\mathbb R}^n} \). For \( 1 \leqslant p \leqslant \infty \), the Bernstein space \( B_K^p \) is the Banach space of all functions \( f \in {L^p}\left( {{{\mathbb R}^n}} \right) \)such that their Fourier transform in a distributional sense is supported on K. If \( f \in B_K^p \), then f is continuous on \( {{\mathbb R}^n} \) and has an extension onto the complex space \( {{\mathbb C}^n} \) to an entire function of exponential type K. We study the approximation of functions in \( B_K^p \) by finite τ -periodic exponential sums of the form
$ \sum\limits_m {{c_m}{e^{2\pi {\text{i}}\left( {x,m} \right)/\tau }}} $
in the \( {L^p}\left( {\tau {{\left[ { - 1/2,1/2} \right]}^n}} \right) \)-norm as τ → ∞ when K is a polytope in \( {{\mathbb R}^n} \).
  相似文献   

8.
Let \(\mathcal Lf(x)=-\Delta f (x)+V(x)f(x)\), V?≥?0, \(V\in L^1_{loc}(\mathbb R^d)\), be a non-negative self-adjoint Schrödinger operator on \(\mathbb R^d\). We say that an L 1-function f is an element of the Hardy space \(H^1_{\mathcal L}\) if the maximal function
$ \mathcal M_{\mathcal L} f(x)=\sup\limits_{t>0}|e^{-t\mathcal L} f(x)| $
belongs to \(L^1(\mathbb R^d)\). We prove that under certain assumptions on V the space \(H^1_{\mathcal L}\) is also characterized by the Riesz transforms \(R_j=\frac{\partial}{\partial x_j}\mathcal L^{-1\slash 2}\), j?=?1,...,d, associated with \(\mathcal L\). As an example of such a potential V one can take any V?≥?0, \(V\in L^1_{loc}\), in one dimension.
  相似文献   

9.
Let f be a fixed holomorphic Hecke eigen cusp form of weight k for \( SL\left( {2,{\mathbb Z}} \right) \), and let \( {\mathcal U} = \left\{ {{u_j}:j \geqslant 1} \right\} \) be an orthonormal basis of Hecke–Maass cusp forms for \( SL\left( {2,{\mathbb Z}} \right) \). We prove an asymptotic formula for the twisted first moment of the Rankin–Selberg L-functions \( L\left( {s,f \otimes {u_j}} \right) \) at \( s = \frac{1}{2} \) as u j runs over \( {\mathcal U} \). It follows that f is uniquely determined by the central values of the family of Rankin–Selberg L-functions \( \left\{ {L\left( {s,f \otimes {u_j}} \right):{u_j} \in {\mathcal U}} \right\} \).  相似文献   

10.
Let \(p\in (1,\infty )\) and \(q\in [1,\infty )\). In this article, the authors characterize the Triebel-Lizorkin space \({F}^{\alpha }_{p,q}(\mathbb {R}^{n})\) with smoothness order α ∈ (0, 2) via the Lusin-area function and the \(g_{\lambda }^{*}\)-function in terms of difference between f(x) and its ball average \(B_{t}f(x):=\frac 1{|B(x,t)|}{\int }_{B(x,t)}f(y)\,dy\) over the ball B(x, t) centered at \(x\in \mathbb {R}^{n}\) with radius t ∈ (0, 1). As an application, the authors obtain a series of characterizations of \(F^{\alpha }_{p,\infty }(\mathbb {R}^{n})\) via pointwise inequalities, involving ball averages, in spirit close to Haj?asz gradients, here some interesting phenomena naturally appear that, in the end-point case when α = 2, some of these pointwise inequalities characterize the Triebel-Lizorkin spaces \(F^{2}_{p,2}(\mathbb {R}^{n})\), while not \(F^{2}_{p,\infty }(\mathbb {R}^{n})\), and that some of other obtained pointwise characterizations are only known to hold true for \(F^{\alpha }_{p,\infty }(\mathbb {R}^{n})\) with \(p\in (1,\infty )\), α ∈ (0, 2) or α ∈ (n/p, 2). In particular, some new pointwise characterizations of Haj?asz-Sobolev spaces via ball averages are obtained. Since these new characterizations only use ball averages, they can be used as starting points for developing a theory of Triebel-Lizorkin spaces with smoothness orders not less than 1 on spaces of homogeneous type.  相似文献   

11.
For nonnegative integers qnd, let \(A_q(n,d)\) denote the maximum cardinality of a code of length n over an alphabet [q] with q letters and with minimum distance at least d. We consider the following upper bound on \(A_q(n,d)\). For any k, let \(\mathcal{C}_k\) be the collection of codes of cardinality at most k. Then \(A_q(n,d)\) is at most the maximum value of \(\sum _{v\in [q]^n}x(\{v\})\), where x is a function \(\mathcal{C}_4\rightarrow {\mathbb {R}}_+\) such that \(x(\emptyset )=1\) and \(x(C)=\!0\) if C has minimum distance less than d, and such that the \(\mathcal{C}_2\times \mathcal{C}_2\) matrix \((x(C\cup C'))_{C,C'\in \mathcal{C}_2}\) is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in n. It yields the new upper bounds \(A_4(6,3)\le 176\), \(A_4(7,3)\le 596\), \(A_4(7,4)\le 155\), \(A_5(7,4)\le 489\), and \(A_5(7,5)\le 87\).  相似文献   

12.
In this paper we develop the theory of Fourier multiplier operators \(T_{m}:L^{p}({\mathbb R}^{d};X)\rightarrow L^{q}({\mathbb R}^{d};Y)\), for Banach spaces X and Y, \(1\le p\le q\le \infty \) and \(m:{\mathbb R}^d\rightarrow \mathcal {L}(X,Y)\) an operator-valued symbol. The case \(p=q\) has been studied extensively since the 1980s, but far less is known for \(p<q\). In the scalar setting one can deduce results for \(p<q\) from the case \(p=q\). However, in the vector-valued setting this leads to restrictions both on the smoothness of the multiplier and on the class of Banach spaces. For example, one often needs that X and Y are UMD spaces and that m satisfies a smoothness condition. We show that for \(p<q\) other geometric conditions on X and Y, such as the notions of type and cotype, can be used to study Fourier multipliers. Moreover, we obtain boundedness results for \(T_m\) without any smoothness properties of m. Under smoothness conditions the boundedness results can be extrapolated to other values of p and q as long as \(\tfrac{1}{p}-\tfrac{1}{q}\) remains constant.  相似文献   

13.
For a local number field K with the ring of integers \( {\mathcal{O}_K} \), the residue field \( {\mathbb{F}_q} \), and uniformizing π, we consider the Lubin–Tate tower \( {K_\pi } = \bigcap\limits_{n \geqslant 0} {{K_n}} \), where K n = K(π n ), f(π0) = 0, and f(π n +1) = π n . Here f(X) defines the endomorphism [π] of the Lubin–Tate group. If q ≠ 2, then for any formal power series \( g(X) \in {\mathcal{O}_K}\left[ {\left[ X \right]} \right] \) the following equality holds: \( \sum\limits_{n = 0}^\infty {{\text{SP}}{{{K_n}} \mathord{\left/{\vphantom {{{K_n}} K}} \right.} K}} g\left( {{\pi_n}} \right) = - g(0) \). One has a similar equality in the case q = 2.  相似文献   

14.
For any homogeneous ideal I in \(K[x_1,\ldots ,x_n]\) of analytic spread \(\ell \), we show that for the Rees algebra R(I), \({\text {reg}}_{(0,1)}^{\mathrm{syz}}(R(I))={\text {reg}}_{(0,1)}^{\mathrm{T}}(R(I))\). We compute a formula for the (0, 1)-regularity of R(I), which is a bigraded analog of Theorem 1.1 of Aramova and Herzog (Am. J. Math. 122(4) (2000) 689–719) and Theorem 2.2 of Römer (Ill. J. Math. 45(4) (2001) 1361–1376) to R(I). We show that if the defect sequence, \(e_k:= {\text {reg}}(I^k)-k\rho (I)\), is weakly increasing for \(k \ge {\text {reg}}^{\mathrm{syz}}_{(0,1)}(R(I))\), then \({\text {reg}}(I^j)=j\rho (I)+e\) for \(j \ge {\text {reg}}^{\mathrm{syz}}_{(0,1)}(R(I))+\ell \), where \(\ell ={\text {min}}\{\mu (J)~|~ J\subseteq I \text{ a } \text{ graded } \text{ minimal } \text{ reduction } \text{ of } I\}\). This is an improvement of Corollary 5.9(i) of [16].  相似文献   

15.
In this paper we are concerned with the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) (\(t\ge 0\)) of normalized biholomorphic mappings on the Euclidean unit ball \(\mathbb {B}^n\) in \({\mathbb {C}}^n\) that can be embedded in normal Loewner chains whose normalizations are given by time-dependent operators \(A\in \widetilde{\mathcal {A}}\), where \(\widetilde{\mathcal {A}}\) is a family of measurable mappings from \([0,\infty )\) into \(L({\mathbb {C}}^n)\) which satisfy certain natural assumptions. In particular, we consider extreme points and support points associated with the compact family \(\widetilde{S}^t_A(\mathbb {B}^n)\), where \(A\in \widetilde{\mathcal {A}}\). We prove that if \(f(z,t)=V(t)^{-1}z+\cdots \) is a normal Loewner chain such that \(V(s)f(\cdot ,s)\in \mathrm{ex}\,\widetilde{S}^s_A(\mathbb {B}^n)\) (resp. \(V(s)f(\cdot ,s)\in \mathrm{supp}\,\widetilde{S}^s_A(\mathbb {B}^n)\)), then \(V(t)f(\cdot ,t)\in \mathrm{ex}\, \widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\) (resp. \(V(t)f(\cdot ,t)\in \mathrm{supp}\,\widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\)), where V(t) is the unique solution on \([0,\infty )\) of the initial value problem: \(\frac{d V}{d t}(t)=-A(t)V(t)\), a.e. \(t\ge 0\), \(V(0)=I_n\). Also, we obtain an example of a bounded support point for the family \(\widetilde{S}_A^t(\mathbb {B}^2)\), where \(A\in \widetilde{\mathcal {A}}\) is a certain time-dependent operator. We also consider the notion of a reachable family with respect to time-dependent linear operators \(A\in \widetilde{\mathcal {A}}\), and obtain characterizations of extreme/support points associated with these families of bounded biholomorphic mappings on \(\mathbb {B}^n\). Useful examples and applications yield that the study of the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) for time-dependent operators \(A\in \widetilde{\mathcal {A}}\) is basically different from that in the case of constant time-dependent linear operators.  相似文献   

16.
For any rational integer q, |q|?>?1, the linear independence over \( \mathbb{Q} \) of the numbers 1, ζ q (1), and ζ ?q (1) is proved; here \( {\zeta_q}(1) = \sum\limits_{n = 1}^\infty {\frac{1}{{{q^n} - 1}}} \) is the so-called q-harmonic series or the q-zeta-value at the point 1. Besides this, a measure of linear independence of these numbers is established.  相似文献   

17.
In this paper we investigate linear codes with complementary dual (LCD) codes and formally self-dual codes over the ring \(R=\mathbb {F}_{q}+v\mathbb {F}_{q}+v^{2}\mathbb {F}_{q}\), where \(v^{3}=v\), for q odd. We give conditions on the existence of LCD codes and present construction of formally self-dual codes over R. Further, we give bounds on the minimum distance of LCD codes over \(\mathbb {F}_q\) and extend these to codes over R.  相似文献   

18.
Optical orthogonal signature pattern codes (OOSPCs) play an important role in a novel type of optical code-division multiple-access network for 2-dimensional image transmission. There is a one-to-one correspondence between an \((m, n, w, \lambda )\)-OOSPC and a \((\lambda +1)\)-(mnw, 1) packing design admitting an automorphism group isomorphic to \(\mathbb {Z}_m\times \mathbb {Z}_n\). In 2010, Sawa gave a construction of an (mn, 4, 2)-OOSPC from a one-factor of Köhler graph of \(\mathbb {Z}_m\times \mathbb {Z}_n\) which contains a unique element of order 2. In this paper, we study the existence of one-factor of Köhler graph of \(\mathbb {Z}_m\times \mathbb {Z}_n\) having three elements of order 2. It is proved that there is a one-factor in the Köhler graph of \(\mathbb {Z}_{2^{\epsilon }p}\times \mathbb {Z}_{2^{\epsilon '}}\) relative to the Sylow 2-subgroup if there is an S-cyclic Steiner quadruple system of order 2p, where \(p\equiv 5\pmod {12}\) is a prime and \(1\le \epsilon ,\epsilon '\le 2\). Using this one-factor, we construct a strictly \(\mathbb {Z}_{2^{\epsilon }p}\times \mathbb {Z}_{2^{\epsilon '}}\)-invariant regular \(G^*(p,2^{\epsilon +\epsilon '},4,3)\) relative to the Sylow 2-subgroup. By using the known S-cyclic SQS(2p) and a recursive construction for strictly \(\mathbb {Z}_{m}\times \mathbb {Z}_{n}\)-invariant regular G-designs, we construct more strictly \(\mathbb {Z}_{m}\times \mathbb {Z}_{n}\)-invariant 3-(mn, 4, 1) packing designs. Consequently, there is an optimal \((2^{\epsilon }m,2^{\epsilon '}n,4,2)\)-OOSPC for any \(\epsilon ,\epsilon '\in \{0,1,2\}\) with \(\epsilon +\epsilon '>0\) and an optimal (6m, 6n, 4, 2)-OOSPC where mn are odd integers whose all prime divisors from the set \(\{p\equiv 5\pmod {12}:p\) is a prime, \(p<\)1,500,000}.  相似文献   

19.
We consider the model space \(\mathbb {M}^{n}_{K}\) of constant curvature K and dimension \(n\ge 1\) (Euclidean space for \(K=0\), sphere for \(K>0\) and hyperbolic space for \(K<0\)), and we show that given a function \(\rho :[0,\infty )\rightarrow [0, \infty )\) with \(\rho (0)=\mathrm {dist}(x,y)\) there exists a coadapted coupling (X(t), Y(t)) of Brownian motions on \(\mathbb {M}^{n}_{K}\) starting at (xy) such that \(\rho (t)=\mathrm {dist}(X(t),Y(t))\) for every \(t\ge 0\) if and only if \(\rho \) is continuous and satisfies for almost every \(t\ge 0\) the differential inequality
$$\begin{aligned} -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) \le \rho '(t)\le -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) +\tfrac{2(n-1)\sqrt{K}}{\sin (\sqrt{K}\rho (t))}. \end{aligned}$$
In other words, we characterize all coadapted couplings of Brownian motions on the model space \(\mathbb {M}^{n}_{K}\) for which the distance between the processes is deterministic. In addition, the construction of the coupling is explicit for every choice of \(\rho \) satisfying the above hypotheses.
  相似文献   

20.
Let \(\mathcal S\) be an abelian group of automorphisms of a probability space \((X, {\mathcal A}, \mu )\) with a finite system of generators \((A_1, \ldots , A_d).\) Let \(A^{{\underline{\ell }}}\) denote \(A_1^{\ell _1} \ldots A_d^{\ell _d}\), for \({{\underline{\ell }}}= (\ell _1, \ldots , \ell _d).\) If \((Z_k)\) is a random walk on \({\mathbb {Z}}^d\), one can study the asymptotic distribution of the sums \(\sum _{k=0}^{n-1} \, f \circ A^{\,{Z_k(\omega )}}\) and \(\sum _{{\underline{\ell }}\in {\mathbb {Z}}^d} {\mathbb {P}}(Z_n= {\underline{\ell }}) \, A^{\underline{\ell }}f\), for a function f on X. In particular, given a random walk on commuting matrices in \(SL(\rho , {\mathbb {Z}})\) or in \({\mathcal M}^*(\rho , {\mathbb {Z}})\) acting on the torus \({\mathbb {T}}^\rho \), \(\rho \ge 1\), what is the asymptotic distribution of the associated ergodic sums along the random walk for a smooth function on \({\mathbb {T}}^\rho \) after normalization? In this paper, we prove a central limit theorem when X is a compact abelian connected group G endowed with its Haar measure (e.g., a torus or a connected extension of a torus), \(\mathcal S\) a totally ergodic d-dimensional group of commuting algebraic automorphisms of G and f a regular function on G. The proof is based on the cumulant method and on preliminary results on random walks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号