首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the incomprssible Navier Stokes equations for the flow inside contraction geometry. The governing equations are expressed in the vorticity-stream function formulations. A rectangular computational domain is arised by elliptic grid generation technique. The numerical solution is based on a technique of automatic numerical generation of acurvilinear coordinate system by transforming the governing equation into computational plane. The transformed equations are approximated using central differences and solved simultaneously by successive over relaxation iteration. The time dependent of the vorticity equation solved by using explicit marching procedure. We will apply the technique on several irregularshapes.  相似文献   

2.
A new method for solution of the evolution of plane curves satisfying the geometric equation v=β(x,k,ν), where v is the normal velocity, k and ν are the curvature and tangential angle of a plane curve Γ ? ?2 at the point x∈Γ, is proposed. We derive a governing system of partial differential equations for the curvature, tangential angle, local length and position vector of an evolving family of plane curves and prove local in time existence of a classical solution. These equations include a non‐trivial tangential velocity functional governing a uniform redistribution of grid points and thus preventing numerically computed solutions from forming various instabilities. We discretize the governing system of equations in order to find a numerical solution for 2D anisotropic interface motions and image segmentation problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
A method for the solution of the Navier–Stokes equation for the prediction of flows inside domains of arbitrary shaped bounds by the use of Cartesian grids with block-refinement in space is presented. In order to avoid the complexity of the body fitted numerical grid generation procedure, we use a saw tooth method for the curvilinear geometry approximation. By using block-nested refinement, we achieved the desired geometry Cartesian approximation in order to find an accurate solution of the N–S equations. The method is applied to incompressible laminar flows and is based on a cell-centred approximation. We present the numerical simulation of the flow field for two geometries, driven cavity and stenosed tubes. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single grid algorithm. The Cartesian block refinement algorithm can be used in any complex curvilinear geometry simulation, to accomplish a reduction in memory requirements and the computational time effort.  相似文献   

4.
New results concerning the construction and application of adaptive numerical grids for solving applied problems are presented. The grid generation technique is based on the numerical solution of inverted Beltrami and diffusion equations for a monitor metric. The capabilities of the spherical metric tensor as applied to adaptive grid generation are examined in detail. Adaptive hexahedral grids are used to numerically solve a boundary value problem for the three-dimensional heat equation with a moving boundary in a continuous medium with discontinuous thermophysical parameters; this problem models the interaction of a thermal wave with a thermocouple embedded in the solid.  相似文献   

5.
The construction of dynamically-adaptive curvilinear coordinate systems based on numerical grid generation and the use thereof in the numerical solution of partial differential equations is surveyed, and correlations are made among the various approaches. These adaptive grids are coupled with the physical solution being done on the grid so that the grid points continually move in the course of the solution in order to resolve developing gradients, or higher variations, in the solution. Particular attention is given to systems using elliptic grid generation based on variational principles. It is noted that dynamic grid adaption can remove the oscillations common when strong gradients occur on fixed grids, and that it appears that when the grid adapts to the solution most numerical solution algorithms work well. Particular applications in computational fluid dynamics and heat transfer are noted.  相似文献   

6.
The paper deals with the numerical solution of a basic 2D model of the propagation of an ionization wave. The system of equations describing this propagation consists of a coupled set of reaction–diffusion-convection equations and a Poissons equation. The transport equations are solved by a finite volume method on an unstructured triangular adaptive grid. The upwind scheme and the diamond scheme are used for the discretization of the convection and diffusion fluxes, respectively. The Poisson equation is also discretized by the diamond scheme. Numerical results are presented. We deal in more detail with numerical tests of the grid adaptation technique and its influence on the numerical results. An original behavior is observed. The grid refinement is not sufficient to obtain accurate results for this particular phenomenon. Using a second order scheme for convection is necessary.  相似文献   

7.
We present a sixth-order explicit compact finite difference scheme to solve the three-dimensional (3D) convection-diffusion equation. We first use a multiscale multigrid method to solve the linear systems arising from a 19-point fourth-order discretization scheme to compute the fourth-order solutions on both a coarse grid and a fine grid. Then an operator-based interpolation scheme combined with an extrapolation technique is used to approximate the sixth-order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid-independent convergence rate for solving convection-diffusion equations with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth-order compact (SOC) scheme, compared with the previously published fourth-order compact (FOC) scheme.  相似文献   

8.
In this paper, a novel meshless technique termed the random integral quadrature (RIQ) method is developed for the numerical solution of the second kind of the Volterra integral equations. The RIQ method is based on the generalized integral quadrature (GIQ) technique, and associated with the Kriging interpolation function, such that it is regarded as an extension of the GIQ technique. In the GIQ method, the regular computational domain is required, in which the field nodes are scattered along straight lines. In the RIQ method however, the field nodes can be distributed either uniformly or randomly. This is achieved by discretizing the governing integral equation with the GIQ method over a set of virtual nodes that lies along straight lines, and then interpolating the function values at the virtual nodes over all the field nodes which are scattered either randomly or uniformly. In such a way, the governing integral equation is converted approximately into a system of linear algebraic equations, which can be easily solved.  相似文献   

9.
Elena Shcherbinina  Stefan Turek 《PAMM》2008,8(1):10195-10196
In our work, the governing system of equations consists of a mass conservation equation, a momentum equation and an equation for the drug concentration in the brain tumor. This system describes the penetration of drugs into the brain tumor (there is a cavity after surgical removal of a cancer tumor), which fill up the cavity after a surgery. We use techniques of computational fluid dynamics (CFD) to get a solution of the derived partial differential equations (Navier–Stokes equation with additional scalar equations and force terms) and obtain a saddle point problem after discretization of the governing system of equations with finite elements such that we can use modern CFD tools and software like FEATFLOW to get numerical solutions of this problem. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A new approach is proposed for the grid motion for the numerical solution of a general transient diffusion equation in one spatial dimension with zero flux boundary conditions. The new criterion for grid motion is that the solute amount contained in each discretization section should be a pre-described fraction of the total solute amount at each time step. This requirement is not explicitly enforced to the solution technique but it is implicitly included in the equation through the appropriate variable transformation. The results showed that although the technique leads to the required grid motion the numerical results are of pure quality due to the appearance of singularities during the variable transformation procedure. Nevertheless, it is shown that by appropriate numerical handling of the solution at the singularity region the technique can lead to accurate results and potentially can replace the existing moving grid algorithms at least for the particular problem at hand.  相似文献   

11.
In this paper, we apply the new homotopy perturbation method to solve the Volterra's model for population growth of a species in a closed system. This technique is extended to give solution for nonlinear integro‐differential equation in which the integral term represents the total metabolism accumulated fromtime zero. The approximate analytical procedure only depends on two components. The newhomotopy perturbationmethodwas applied to nonlinear integro‐differential equations directly and by converting the problem into nonlinear ordinary differential equation. We also compare this method with some other numerical results and show that the present approach is less computational and is applicable for solving nonlinear integro‐differential equations and ordinary differential equations as well. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The current paper proposes a technique for the numerical solution of generalized Kuramoto–Sivashinsky equation. The method is based on finite difference formula combined with the collocation method, which uses the polynomial scaling functions (PSF). Mentioned functions and their properties are employed to derive a general procedure for forming the operational matrix of PSFs. Using the operational matrix of derivative, we reduce the problem to a set of algebraic linear equations. An estimation of error bound for this method is presented. Some numerical example is included to demonstrate the validity and applicability of the technique. From the computational point of view, the solution obtained by this method is in excellent agreement with those obtained by previous works and also it is efficient to use.  相似文献   

13.
We investigate a meshless method for the accurate and non-oscillatory solution of problems associated with two-dimensional Helmholtz-type equations in the presence of boundary singularities. The governing equation and boundary conditions are approximated by the method of fundamental solutions (MFS). It is well known that the existence of boundary singularities affects adversely the accuracy and convergence of standard numerical methods. The solutions to such problems and/or their corresponding derivatives may have unbounded values in the vicinity of the singularity. This difficulty is overcome by subtracting from the original MFS solution the corresponding singular functions, without an appreciable increase in the computational effort and at the same time keeping the same MFS approximation. Four examples for both the Helmholtz and the modified Helmholtz equations are carefully investigated and the numerical results presented show an excellent performance of the approach developed.  相似文献   

14.
We consider a linear integral equation with a supersingular integral treated in the sense of the Hadamard finite value, which arises in the solution of the Neumann boundary value problem for the Laplace equation with the representation of the solution in the form of a doublelayer potential. We consider the case in which the exterior boundary value problem is solved outside a plane surface (a screen). For the integral operator in the above-mentioned equation, we suggest quadrature formulas of the vortex loop method with regularization, which provide its approximation on the entire surface when using an unstructured partition. In the problem in question, the derivative of the unknown density of the double-layer potential, as well as the errors of quadrature formulas, has singularities in a neighborhood of the screen edge. We construct a numerical scheme for the integral equation on the basis of the suggested quadrature formulas and prove an estimate for the norm of the inverse matrix of the resulting system of linear equations and the uniform convergence of the numerical solutions to the exact solution of the supersingular integral equation on the grid.  相似文献   

15.
An effective method based upon Legendre multiwavelets is proposed for the solution of Fredholm weakly singular integro-differential equations. The properties of Legendre multiwavelets are first given and their operational matrices of integral are constructed. These wavelets are utilized to reduce the solution of the given integro-differential equation to the solution of a sparse linear system of algebraic equations. In order to save memory requirement and computational time, a threshold procedure is applied to obtain the solution to this system of algebraic equations. Through numerical examples, performance of the present method is investigated concerning the convergence and the sparseness of the resulted matrix equation.  相似文献   

16.
In this article, we develop a two‐grid algorithm for nonlinear reaction diffusion equation (with nonlinear compressibility coefficient) discretized by expanded mixed finite element method. The key point is to use two‐grid scheme to linearize the nonlinear term in the equations. The main procedure of the algorithm is solving a small‐scaled nonlinear equations on the coarse grid and dealing with a linearized system on the fine space using the Newton iteration with the coarse grid solution. Error estimation to the expanded mixed finite element solution is analyzed in detail. We also show that two‐grid solution achieves the same accuracy as long as the mesh sizes satisfy H = O(h1/2). Two numerical experiments are given to verify the effectiveness of the algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

17.
Two-dimensional supersonic laminar ideal gas flows past a regular flat lattice of identical circular cylinders lying in a plane perpendicular to the free-stream velocity are numerically simulated. The flows are computed by applying a multiblock numerical technique with local boundary-fitted curvilinear grids that have finite regions overlapping the global rectangular grid covering the entire computational domain. Viscous boundary layers are resolved on the local grids by applying the Navier–Stokes equations, while the aerodynamic interference of shock wave structures occurring between the lattice elements is described by the Euler equations. In the overlapping grid regions, the functions are interpolated to the grid interfaces. The regimes of supersonic lattice flow are classified. The parameter ranges in which the steady flow around the lattice is not unique are detected, and the mechanisms of hysteresis phenomena are examined.  相似文献   

18.
An efficient procedure is proposed for generating three-dimensional numerical grids inside domains with curvilinear boundaries. Systems of partial differential equations of elliptical type are used as the basic equations for grid generation. An approximate factorization method is proposed for numerical solution of the resulting boundary-value problem. Calculation results are reported for a prototype domain. Translated from Prikladnaya Matematika i Informatika, No. 2, pp. 99–105, 1999.  相似文献   

19.
不可压缩流动的数值模拟是计算流体力学的重要组成部分. 基于有限元离散方法, 本文设计了不可压缩Navier-Stokes (N-S)方程支配流的若干并行数值算法. 这些并行算法可归为两大类: 一类是基于两重网格离散方法, 首先在粗网格上求解非线性的N-S方程, 然后在细网格的子区域上并行求解线性化的残差方程, 以校正粗网格的解; 另一类是基于新型完全重叠型区域分解技巧, 每台处理器用一局部加密的全局多尺度网格计算所负责子区域的局部有限元解. 这些并行算法实现简单, 通信需求少, 具有良好的并行性能, 能获得与标准有限元方法相同收敛阶的有限元解. 理论分析和数值试验验证了并行算法的高效性  相似文献   

20.
We present an adaptive sparse grid algorithm for the solution of the Black–Scholes equation for option pricing, using the finite element method. Sparse grids enable us to deal with higher-dimensional problems better than full grids. In contrast to common approaches that are based on the combination technique, which combines different solutions on anisotropic coarse full grids, the direct sparse grid approach allows for local adaptive refinement. When dealing with non-smooth payoff functions, this reduces the computational effort significantly. In this paper, we introduce the spatially adaptive discretization of the Black–Scholes equation with sparse grids and describe the algorithmic structure of the numerical solver. We present several strategies for adaptive refinement, evaluate them for different dimensionalities, and demonstrate their performance showing numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号