首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Thermally stable polymers containing 1,3,4-oxadiazole units have been synthesized through Huisgen reaction of the aromatic/aliphatic bis-tetrazole compounds with the aromatic/aliphatic bis-acid chlorides in pyridine as solvent.The obtained polymers are insoluble or slightly soluble even in polar aprotic solvents such as DMSO and DMF.Relatively high inherent viscosity values(0.61-1.33 dL/g,in 0.125%H2SO4 at 25℃) were observed for these compounds.Thermal analyses of the polymers using DSC and TGA techniques showed that the polymers have improved thermal stabilities.The glass transition temperature has not been observed in the fully aromatic polymers,but the polymers obtained from 5-[6-(1H-tetrazol -5-yl)hexyl]-lH-tetrazole(Ⅳ) showed very clear Tg.A model reaction was also investigated and the resulting bis-1,3,4-oxadiazole compound was characterized by conventional spectroscopy methods.  相似文献   

2.
Two reaction routes for the preparation of aromatic poly-1,3,4-oxadiazoles and poly-1,2,4-triazoles are studied and their influence on the physical properties, i.e., inherent viscosity, glass transition, degradation temperature, and film integrity of the final products are discussed. Aromatic poly-1,3,4-oxadiazoles are prepared by means of a polycondensation reaction of terephthaloyl chloride and isophthalic dihydrazide yielding a precursor polymer, poly(p, m-phenylene) hydrazide, which is converted into the corresponding poly-1,3,4-oxadiazole by means of a cyclodehydration reaction. Poly-1,3,4-oxadiazoles are also prepared by means of a polycondensation reaction between terephthalic and isophthalic acid and hydrazine yielding poly-1,3,4-oxadiazoles with higher inherent viscosities. Flexible poly-1,3,4-oxadiazole films are obtained only if the inherent viscosities of the polymers used are higher than 2.7 dL/g. The thermal stability is found to increase with increasing content of p-phenylene groups in the polymer backbone. Aromatic poly-1,2,4-triazoles are prepared using polyhydrazides with alternating para- and meta-phenylene groups and poly-1,3,4-oxadiazoles with a random incorporation of para- and meta-phenylene groups in the main chain as precursor polymers. The glass transition temperatures are found to increase with increasing content of p-phenylene groups in the main chain of these polymers. Cold crystallization is observed only for the alternating polymer. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
New types of polyamides containing pendent triaryl pyridine groups were successfully synthesized by direct polycondensation of a symmetry diamine,(4-(4-(2,6-diphenylpyridin-4yl)phenoxy)phenyl)-3,5-diaminobezamide(DPDAB), and various aromatic and aliphatic dicarboxylic diacids in NMP using triphenyl phosphate(TPP) and pyridine as catalyst. The diamine and all the prepared polyamides were fully characterized by using FT-IR,1H-NMR,UV-Vis spectroscopy, fluorimetry and elemental analysis.The inherent viscosity of polyamides ranged from 0.45 dL/g to 0.68 dL/g.All the polymers exhibited solubility in common polar aprotic solvents such as NMP,DMAc,DMF,DMSO,pyridine,HMPA,and even in less polar solvents such as THF and m-cresol at room temperature.Thermal properties of polyamides were evaluated by means of DSC,DMTA and TGA.These polymers showed glass transition temperatures(Tg) in the range of 138-210℃. Their initial decomposition temperature(Ti) varied from 265℃to 310℃under N2.The dilute solution(0.2 g/dL) of polyamides in DMF exhibited fluorescence emission withλmax in the range of 470-550 nm.  相似文献   

4.
New aromatic polyamides containing 1,3,4-oxadiazole or benzonitrile units in the main chain and 5-(4-acetoxybenzamido) groups in the side chain have been synthesized and their properties have been characterized and compared with those of related polyamides and polyoxadiazole-amides. These polymers show good thermal stability, with initial decomposition temperature being at about 300 °C and glass transition temperature in the range of 260-280 °C. They are easily soluble in certain solvents such as N-methylpyrrolidinone (NMP), N,N-dimethylacetamide (DMA) and N,N-dimethylformamide (DMF) and can be cast from solutions into thin flexible films. The polymer films had tensile strengths in the range of 77-97 MPa, tensile moduli in the range of 2.3-2.6 GPa and elongation at break values ranging from 6% to 24%. One of the polymers containing the 1,3,4-oxadiazole ring exhibited blue fluorescence.  相似文献   

5.
A new interesting class of thermal stable arylidene polymers containing 1,3,4-oxadiazole and 1,2,4-triazole moieties in the main chain have been synthesized from aromatic polyhydrazide I. Cyclization of I at 250°C in the absence of solvent was found to be the best pathway for the inclusion of the 1,3,4-oxadiazole moiety in the main chain. Heating of I with aniline, cyclohexyl amine, or 3-amino pyridine at 180°C for 30 h gave the corresponding 1,2,4-triazole polymers III. The introducing effect of different aromatic, cycloalkyl, and heterocyclic amines in IIIa-c and IVa-c on thermal stability behavior was studied by TGA analysis. Moreover, all the polymers were characterized by elemental and spectral analyses, solubility, and viscometry measurements. X-ray diffractograms of the synthesized polymers showed they had less crystallinity than the polyhydrazide precursors.  相似文献   

6.
A convenient method for the synthesis of poly(1,3,4-oxadiazole)s of high molecular weights has been developed. These polymers were prepared readily by the direct polycondensation of dicarboxylic acids with hydrazine sulfate ( 1 ) using phosphorus pentoxide/methanesulfonic acid (PPMA) as both a condensing agent and solvent. Polycondensation of aliphatic dicarboxylic acids with 1 proceeded even at room temperature and produced poly(1,3,4-oxadiazole)s with inherent viscosities up to 1.4 dL/g. The synthesis of aromatic poly(1,3,4-oxadiazole)s from aromatic dicarboxylic acids containing phenyl ether structures was carried out by a one-pot procedure because the preactivation of dicarboxylic acids was required. The synthesis of 2,5-disubstituted-1,3,4-oxadiazoles by the reaction of carboxylic acids with 1 in PPMA was studied to demonstrate the feasibility of the reaction for polymer formation. The thermogravimetry of the aromatic poly(1,3,4-oxadiazole)s showed 10% weight loss both in air and in nitrogen at 440–490°C.  相似文献   

7.
New poly(1,3,4-oxadiazole-imide)s containing dimethylsilane units have been prepared by solution polycondensation reaction of an aromatic dianhydride incorporating dimethylsilane group, namely bis(3,4-dicarboxyphenyl)dimethylsilane dianhydride, with different aromatic diamines having preformed 1,3,4-oxadiazole ring, such as 2,5-bis(p-aminophenyl)-1,3,4-oxadiazole, 2,5-bis[p-(4-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2,5-bis[p-(3-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2-(4-fluorophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole, and 2-(4-dimethylaminophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole. The polymers were easily soluble in polar organic solvents, such as N-methylpyrrolidinone, N,N-dimethylformamide, and pyridine, as well as in less polar organic solvents, such as tetrahydrofuran and chloroform. Very thin coatings deposited on silicon wafers exhibited smooth, pinhole-free surface in atomic force microscopy investigations. The polymers showed high thermal stability with decomposition temperature being above 415 °C.They exhibited a glass transition in the temperature range of 202-282 °C, with reasonable interval between glass transition and decomposition temperature. Solutions of the polymers in N,N-dimethylformamide exhibited fluorescence, having maximum emission wavelength in the range of 353-428 nm.  相似文献   

8.
<正>In the present work,new thermally stable polymers containing 1,3,4-oxadiazole units have been synthesized through Huisgen reaction of the aromatic bis-tetrazole compounds with the aromatic/aliphatic bis-acid chlorides in pyridine as solvent.The obtained polymers are insoluble or slightly soluble in polar aprotic solvents such as DMSO and DMF. Thermal analyses of the polymers using DSC and TGA techniques showed that the polymers had improved thermal stabilities.The model reaction was also investigated and the resulting bis-l,3,4-oxadiazole compounds were characterized by conventional spectroscopic methods.  相似文献   

9.
A fluorine-containing diamine, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane (BAPPH) ( II ), was synthesized in two steps on condensation of 2,2-bis(4-hydroxyphenyl)hexafluoropropane with p-chloronitrobenzene in the presence of potassium carbonate, giving 2,2-bis[4-(4-nitrophenoxy)phenyl]hexafluoropropane ( I ), followed by reduction with hydrazine monohydrate/Pd—C. Fluorine-containing polyamides and copolyamides having inherent viscosities 0.41–0.88 dL g−1 were prepared by direct polycondensation of BAPPH with various aromatic diacids or with mixed diacids, by triphenyl phosphite and pyridine in N-methyl-2-pyrrolidinone (NMP). The polyamides were examined by elemental analysis, IR spectra, inherent viscosity, x-ray diffraction, solubility, DSC, and TGA. The diffractogram showed that the polyamides were crystalline except IVb , IVc , IVf , and Vc . Almost all polyamides were soluble in polar aprotic solvents. The polymers obtained from BAPPH lost no mass below 350°C, with 10% loss of mass being recorded above 467°C in nitrogen. These aromatic polyamides had glass transition temperatures in the 221–253°C range. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Poly(1,3,4-oxadiazole-ether-imide)s were prepared by thermal imidization of poly(amic-acid) intermediates resulting from the solution polycondensation reaction of a bis(ether-anhydride), namely 2,2′-bis-[(3,4-dicarboxyphenoxy)phenyl]-1,4-phenylenediisopropylidene dianhydride, with different aromatic diamines containing 1,3,4-oxadiazole ring, such as 2,5-bis(p-aminophenyl)-1,3,4-oxadiazole, 2,5-bis[p-(4-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2-(4-dimethylaminophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole. Poly(1,3,4-oxadiazole-ether-imide)-polydimethylsiloxane copolymers were prepared by polycondensation reaction of the same bis(ether-anhydride) with equimolar quantities of an aromatic diamine having 1,3,4-oxadiazole ring and a bis(aminopropyl)polydimethylsiloxane oligomer of controlled molecular weight. A solution imidization procedure was used to convert quantitatively the poly(amic-acid) intermediates to the corresponding polyimides. All the polymers were easily soluble in polar organic solvents such as N-methylpyrrolidone and N,N-dimethylacetamide. The polymers showed good thermal stability with decomposition temperature being above 400 °C. Solutions of some polymers in N-methylpyrrolidone exhibited blue fluorescence, having maximum emission wavelength in the range of 370-412 nm.  相似文献   

11.
A new series of modified polyisophthalamides bearing N-benzylidene pendant groups was prepared by reacting various aromatic diamines with 5-(N-benzylidene) isophthalic acid. The latter was synthesized from the reaction of 5-aminoisophthalic acid with benzaldehyde and characterized by IR and 1H-NMR spectroscopy. Triphenyl phosphite and pyridine was used as condensing agents for preparing polyamides. In addition, the corresponding unsubstituted polyisophthalamides were prepared under identical experimental conditions for comparative purposes. Characterization of modified polyamides was accomplished by IR as well as inherent viscosity measurements. They showed a slightly lower solubility in various media than the corresponding unsubstituted polyamides. The cured modified polyamides displayed significantly higher thermal stability than the cured unsubstituted polyamides. They were stable up to 355–308°C in N2 or air and afforded anaerobic char yield of 66–61% at 800°C. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
含吡啶环的1,3,4-噁二唑衍生物的合成及生物活性研究   总被引:22,自引:0,他引:22  
依据生物电子等排原理,在分子中同时引入吡啶环和1,3,4-噁二唑杂环合成了5-(3-吡啶基或4-吡啶基)-1,3,4-噁二唑2-硫乙酸胺类化合物,用1HNMR,IR,质谱和元素分析对其结构进行了表征.离体试验表明,化合物B1-5小麦赤霉病菌和苹果轮纹病菌的抑制率分别为30%和42%,化合物B1-6对苹果轮纹病菌的抑制率为38%.除草活性实验结果表明,化合物B1-6对油菜和稗草具有较高的抑制作用.  相似文献   

13.
In the present investigation, a series of 2(4-pyridyl)-5[(aryl/heteroarylamino)-1-oxoethyl]thio-1,3,4-oxadiazole were synthesized using isonicotinohydrazide and substituted aryl/heteroaryl amines using pyridine as solvent. Newly synthesized compounds were tested for their in vitro anti-tubercular activity against Mycobacterium tuberculosis H37Rv using the BACTEC 460 radiometric system. Among the synthesized compounds, compounds 2(4-pyridyl)-5((2-nitrophenylamino)-1-oxoethyl)thio-1,3,4-oxadiazole (5e), 2(4-pyridyl)-5((4-nitrophenylamino)-1-oxoethyl)thio-1,3,4-oxadiazole (5g) and 2(4-pyridyl)-5((2-pyrrolylamino)-1-oxoethyl)thio-1,3,4-oxadiazole (5k) produced highest efficacy and exhibited >90% inhibition at a concentration of 0.0077, 0.0052 and 0.0089 μM, respectively. All the new compounds were pharmacologically evaluated for their in vitro Antimicrobial activity.  相似文献   

14.
The amidation reaction based on catalytic coupling of alcohols with amines previously reported by us, using the pincer complexes 1 and 2 as catalysts, was applied to the generation of polyamides from nonactivated diols and diamines. A range of polymers was prepared, with Mn up to 26.9 kDa. Unlike the traditional syntheses of polyamides based on carboxylic acid derivatives, which require the use of toxic reagents and generate stoichiometric amounts of waste, this process generates only molecular hydrogen as byproduct. Both aromatic and aliphatic diols and diamines were used. Gel permeation chromatography measurements of the dimethylformamide‐soluble polymers and thermal studies of the polyamides were performed. Matrix assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) spectra are also reported. Thermogravimetric analyses studies indicate that the aromatic polyamides (with the exception of the pyridine‐based polyamide) are more thermally stable than the aliphatic ones. This general, environmentally benign method for the synthesis of polyamides is homogeneously catalyzed under neutral conditions by dearomatized ruthenium‐pincer complexes 1 and 2 and proceeds in 1,4‐dioxane under an inert atmosphere. Conditions for polyamidation in the absence of solvent are also reported, using the pincer complex 2 as catalyst. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
A new diamine containing ferrocene group with preformed ether and amide units was prepared via reaction of 1,1′-ferrocenedicarbonyl chloride with two moles of 2,6-bis(5-amino-1-naphthoxy)pyridine. Polycondensation reactions of the prepared diamine with different aromatic and aliphatic diacid chlorides in the presence of trimethylchlorosilane (TMSCl) resulted in preparation of novel ferrocene modified poly(amide ether amide)s. The monomer and polyamides were characterized and the effect of trimethylchlorosilane (TMSCl) as activating agent on the polymerization reaction was studied. The physical and thermal properties of the polyamides including inherent viscosity, solubility, thermal stability and behavior, flame-retardancy and crystallinity of the polymers were studied. The polymers showed good thermal stability and flame-retardancy, and also improved solubility in polar aprotic solvents.  相似文献   

16.
Novel thermally stable and organosoluble poly(thiourea-amide-imide)s (PTAIs) were synthesized through the condensation of various diamines with a new kind of aromatic diacid chloride monomer containing pyridine units, 2-(3-(2-(3-(chlorocarbonyl)pyridin-2-yl)-1,3-dioxoisoindoline-5-carbonyl) thioureido) nicotinoyl chloride, CPDITNC. Spectroscopic and elemental analyses were carried out for the structure elucidation of synthesized monomers. Accordingly, the ensuing PTAIs were characterized by FTIR, 1H and 13C NMR techniques along with crystallinity, organosolubility, inherent viscosity and GPC measurements. Consequently, polymers bearing phenyl thiourea and pyridine moieties in the backbone exhibited good organosolubility in a variety of highly polar solvents such as DMAc, DMF, DMSO and NMP. PTAIs encompassed ηinh of 1.24-1.46 dL/g and two of the polymers showed crystalline behavior. Moreover, GPC measurements of polymers revealed Mw around 33,000-50,000. Thermal stability of these polymers was ascertained via 10% weight loss temperatures in the range of 548-562 °C (inert atmosphere). Ultimately, these polymers own high glass-transition temperatures about 264-270 °C.  相似文献   

17.
A novel synthetic procedure for the preparation of poly(oxadiazole)s was developed with nucleophilic substitution of α,ω-alkanediols with oxadiazole-activated bisfluoride. Seven poly(oxadiazole)s were successfully prepared by the solution polymerization of 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazole and various α,ω-alkanediols [HO (CH2)n OH, n = 5–10 or 12] in diphenyl sulfone at temperature greater than 230 °C with K2CO3 as a catalyst. The reduced viscosities of the poly(oxadiazole)s were 0.14–0.51 dL/g, and the decomposition temperatures were greater than 350 °C and decreased from 436 to 379 °C with increasing spacer length (n). Corresponding model compounds, consisting of two terminal mesogenic 2,5-bisphenyl-1,3,4-oxadiazole units and central poly(methylene) spacers, were also prepared for comparison. Both the polymers and model compounds exhibited an extraordinary odd–even effect: odd ones showed higher transition temperatures (melting and clearing temperatures). With differential scanning calorimetry, polarized optical microscopy (POM), and X-ray diffraction, we found that the nematic mesophase was the only texture in the melts except for the polymers with longer methylene units (n = 9), in which smectic mesophases were observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 293–301, 2002  相似文献   

18.
A series of thermally stable and semiconducting polyazomethines containing 1,3,4-oxadiazole or 1,3,4-thiadiazole ring in the polymer backbone were synthesized by the simple solution poly-condensation of dialdehydes with the preformed nuclei with aromatic diamines under mild conditions. To elucidate the structure and also structure-property relationships of the polymers, model compounds were prepared under the same reaction conditions. These polyazomethines having a wholly conjugated system were yellow powders and had reduced viscosities up to 0.38 dL/g in concentrated sulfuric acid and electric conductivity as high as 10?11 S cm?1 at room temperature. Thermogravimetry showed that all the polymers were heat resistant up to around 400°C, in both air and nitrogen atmospheres. Their completely black colored charge-transfer complexes were prepared by iodine-doping of the polymers. The room temperature conductivity of the polymers was found to be markedly increased up to the orders of 10?6–10?7 S cm?1 upon doping. The highest value attained was 4.8 x 10?6 S cm?1. Comparison of electronic spectra of the polymers with those of the model compounds indicated the π-electrons in the polymers are extensively delocalized along the polymer main chain.  相似文献   

19.
9,9-Bis[4-(p-aminophenoxy)phenyl]fluorene ( II ) was used as a monomer with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides to synthesize polyamides and polyimides, respectively. The diamine II was derived by a nucleophilic substitution of 9,9-bis(4-hydroxyphenyl)fluorene with p-chloronitrobenzene in the presence of K2CO3 and then hydro-reduced. Polyamides IV a-g having inherent viscosities of 0.73–1.39 dL/g were prepared by the direct polycondensation of the diamine II with various aromatic diacids using triphenyl phosphite and pyridine as condensing agents. All the aromatic polyamides were amorphous and readily soluble in various polar solvents such as N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, and N-methyl-2-pyrrolidone. Transparent and flexible films of these polymers could be cast from the DMAc solutions. These aromatic polyamides had glass transition temperatures in the range of 283–309°C and 10% weight loss occurred up to 460°C. The polyimides were synthesized from diamine II and various aromatic dianhydrides via the two-stage procedure that included ring-opening poly-addition in DMAc to give poly(amic acid)s, followed by thermal or chemical conversion to polyimides. The poly(amic acid)s had inherent viscosities of 0.62–1.78 dL/g, depending on the dianhydrides. Most of the aromatic polyimides obtained by chemical cyclization were found to be soluble in NMP. These polyimides showed almost no weight loss up to 500°C in air or nitrogen atmosphere. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
《印度化学会志》2023,100(7):101032
A series of ten polyamides was prepared by the high-temperature polycondensation of 4,6-bis(N-(4-(benzoylchloride)amino))-2-(N-phenyl- piperazin-1-yl)-1,3,5-triazine with different aromatic and aliphatic diamines. The synthesized polyamides were analyzed by physico-chemical properties such as solubility, density, viscosity etc. The structure of prepared polyamides was evaluated by 1H NMR and FTIR spectrum. Thermogravimetric analysis used to study the kinetics of thermal degradation of some synthesized polyamides. Broido, Horowitz & Metzger, Coats Redfern and Chan et al. models were applied to respective thermograms to determine the activation energy (Ea). Activation energy data shows that the polyamides obtained from aromatic diamine has greater stability than the polyamides obtained from aliphatic amine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号