首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 873 毫秒
1.
The following results are proved: Let A = (aij) be an n × n complex matrix, n ? 2, and let k be a fixed integer, 1 ? k ? n ? 1.(1) If there exists a monotonic G-function f = (f1,…,fn) such that for every subset of S of {1,…,n} consisting of k + 1 elements we have
Πi∈Sfi(A)<Πi∈S|aii|,
then the rank of A is ? n ? k + 1. (2) If A is irreducible and if there exists a G-function f = (f1,…,fn) such that for every subset of S of {1,…,n} consisting of k + 1 elements we have
Πi∈Sfi(A)<Πi∈S|aii|,
then the rank of A is ? n ? k + 1 if k ? 2, n ? 3; it is ? n ? 1 if k = 1.  相似文献   

2.
Let?(x1,…,xp) be a polynomial in the variables x1,…,xp with nonnegative real coefficients which sum to one, let A1,…,Ap be stochastic matrices, and let ??(A1,…,Ap) be the stochastic matrix which is obtained from ? by substituting the Kronecker product of An11,…,Anppfor each term Xn11·?·Xnpp. In this paper, we present necessary and sufficient conditions for the Cesàro limit of the sequence of the powers of ??(A1,…,Ap) to be equal to the Kronecker product of the Cesàro limits associated with each of A1,…,Ap. These conditions show that the equality of these two matrices depends only on the number of ergodic sets under??(A1,…,Ap) and?or the cyclic structure of the ergodic sets under A1,…,Ap, respectively. As a special case of these results, we obtain necessary and sufficient conditions for the interchangeability of the Kronecker product and the Cesàro limit operator.  相似文献   

3.
Davio and Deschamps have shown that the solution set, K, of a consistent Boolean equation ?(x1, …, xn)=0 over a finite Boolean algebra B may be expressed as the union of a collection of subsets of Bn, each of the form {(x1, …, xn) | aixibi, ai?B, bi?B, i = 1, …, n}. We refer to such subsets of Bn as segments and to the collection as a segmental cover of K. We show that ?(x1, …, xn) = 1 is consistent if and only if ? can be expressed by one of a class of sum-of-products expressions which we call segmental formulas. The object of this paper is to relate segmental covers of K to segmental formulas for ?.  相似文献   

4.
Let (A, G, α) be a C1-dynamical system, where G is abelian, and let φ be an invariant state. Suppose that there is a neighbourhood Ω of the identity in G? and a finite constant κ such that Πi = 1n φ(xi1xi) ? κ Πi = 1n φ(xixi1) whenever xi lies in a spectral subspace Rαi), where Ω1 + … + Ωn ? Ω. This condition of complete spectral passivity, together with self-adjointness of the left kernel of φ, ensures that φ satisfies the KMS condition for some one-parameter subgroup of G.  相似文献   

5.
We show that under mild conditions the joint densities Px1,…,xn) of the general discrete time stochastic process Xn on pH can be computed via
Px1,…,xn(x1,…,xn) = 6?T(x1)…T(xn)62
where ? is in a Hilbert space pH, and T (x), x ? pH are linear operators on pH. We then show how the Central Limit Theorem can easily be derived from such representations.  相似文献   

6.
Let (Wt) = (W1t,W2t,…,Wdt), d ? 2, be a d-dimensional standard Brownian motion and let A(t) be a bounded measurable function from R+ into the space of d × d skew-symmetric matrices and x(t) such a function into Rd. A class of stochastic processes (LtA,x), a particular example of which is Levy's “stochastic area” Lt = 120?t (W1s,dW2s ? W2s,dW1s), is dealt with.The joint characteristic function of Wt and L1A,x is calculated and based on this result a formula for fundamental solutions for the hypoelliptic operators which generate the diffusions (Wt,LtA,x) is given.  相似文献   

7.
Let V denote a finite dimensional vector space over a field K of characteristic 0, let Tn(V) denote the vector space whose elements are the K-valued n-linear functions on V, and let Sn(V) denote the subspace of Tn(V) whose members are the fully symmetric members of Tn(V). If Ln denotes the symmetric group on {1,2,…,n} then we define the projection PL : Tn(V) → Sn(V) by the formula (n!)?1Σσ ? Ln Pσ, where Pσ : Tn(V) → Tn(V) is defined so that Pσ(A)(y1,y2,…,yn = A(yσ(1),yσ(2),…,yσ(n)) for each A?Tn(V) and yi?V, 1 ? i ? n. If xi ? V1, 1 ? i ? n, then x1?x2? … ?xn denotes the member of Tn(V) such that (x1?x2· ? ? ?xn)(y1,y2,…,yn) = Пni=1xi(yi) for each y1 ,2,…,yn in V, and x1·x2xn denotes PL(x1?x2? … ?xn). If B? Sn(V) and there exists x i ? V1, 1 ? i ? n, such that B = x1·x2xn, then B is said to be decomposable. We present two sets of necessary and sufficient conditions for a member B of Sn(V) to be decomposable. One of these sets is valid for an arbitrary field of characteristic zero, while the other requires that K = R or C.  相似文献   

8.
Let Ω be a simply connected domain in the complex plane, and A(Ωn), the space of functions which are defined and analytic on Ωn, if K is the operator on elements u(t, a1, …, an) of A(Ωn + 1) defined in terms of the kernels ki(t, s, a1, …, an) in A(Ωn + 2) by Ku = ∑i = 1naitk i(t, s, a1, …, an) u(s, a1, …, an) ds ? A(Ωn + 1) and I is the identity operator on A(Ωn + 1), then the operator I ? K may be factored in the form (I ? K)(M ? W) = (I ? ΠK)(M ? ΠW). Here, W is an operator on A(Ωn + 1) defined in terms of a kernel w(t, s, a1, …, an) in A(Ωn + 2) by Wu = ∝antw(t, s, a1, …, an) u(s, a1, …, an) ds. ΠW is the operator; ΠWu = ∝an ? 1w(t, s, a1, …, an) u(s, a1, …, an) ds. ΠK is the operator; ΠKu = ∑i = 1n ? 1aitki(t, s, a1, …, an) ds + ∝an ? 1tkn(t, s, a1, …, an) u(s, a1, …, an) ds. The operator M is of the form m(t, a1, …, an)I, where m ? A(Ωn + 1) and maps elements of A(Ωn + 1) into itself by multiplication. The function m is uniquely derived from K in the following manner. The operator K defines an operator K1 on functions u in A(Ωn + 2), by K1u = ∑i = 1n ? 1ait ki(t, s, a1, …, an) u(s, a, …, an + 1) ds + ∝an + 1t kn(t, s, a1, …, an) u((s, a1, …, an + 1) ds. A determinant δ(I ? K1) of the operator I ? K1 is defined as an element m1(t, a1, …, an + 1) of A(Ωn + 2). This is mapped into A(Ωn + 1) by setting an + 1 = t to give m(t, a1, …, an). The operator I ? ΠK may be factored in similar fashion, giving rise to a chain factorization of I ? K. In some cases all the matrix kernels ki defining K are separable in the sense that ki(t, s, a1, …, an) = Pi(t, a1, …, an) Qi(s, a1, …, an), where Pi is a 1 × pi matrix and Qi is a pi × 1 matrix, each with elements in A(Ωn + 1), explicit formulas are given for the kernels of the factors W. The various results are stated in a form allowing immediate extension to the vector-matrix case.  相似文献   

9.
If r, k are positive integers, then Tkr(n) denotes the number of k-tuples of positive integers (x1, x2, …, xk) with 1 ≤ xin and (x1, x2, …, xk)r = 1. An explicit formula for Tkr(n) is derived and it is shown that limn→∞Tkr(n)nk = 1ζ(rk).If S = {p1, p2, …, pa} is a finite set of primes, then 〈S〉 = {p1a1p2a2psas; piS and ai ≥ 0 for all i} and Tkr(S, n) denotes the number of k-tuples (x1, x3, …, xk) with 1 ≤ xin and (x1, x2, …, xk)r ∈ 〈S〉. Asymptotic formulas for Tkr(S, n) are derived and it is shown that limn→∞Tkr(S, n)nk = (p1 … pa)rkζ(rk)(p1rk ? 1) … (psrk ? 1).  相似文献   

10.
Let Ω be an arbitrary open subset of Rn of finite positive measure, and assume the existence of a subset Λ ? Rn such that the exponential functions eλ = exp i(λ1x1 + … + λnxn), λ = (λ1,…, λn) ∈ Λ, form an orthonormal basis for L2(Ω) with normalized measure. Assume 0 ∈ Λ and define subgroups K and A of (Rn, +) by K = Λ0 = {γ ∈ Rn:γ·λ ∈ 2πZ}, A = {a ∈ Rn:Uam U1a = m}, where Ut is the unitary representation of Rn on L2(Ω) given by Ute = eitλeλ, tRn, λ ∈ Λ, and where m is the multiplication algebra of L(Ω) on L2. Assume that A is discrete. Then there is a discrete subgroup D ? A of dimension n, a fundamental domain D for D, and finite sets of representers RΛ, RΓ, RΩ, each containing 0, RΛ for AK in K0, and RΩ for AK in A such that Ω is disjoint union of translates of D: Ω = ∪a∈RΩ (a + D), neglecting null sets, and Λ = RΛD0. If RΓ is a set of representers for DA in D, then Γ = RΓK is a translation set for Ω, i.e., Ω ⊕ Γ = Rn, direct sum, (neglecting null sets). The case A = Rn corresponds to Ω = D, Λ = D0 and Γ = K. This last case corresponds in turn to a function theoretic assumption of Forelli.  相似文献   

11.
Let X1, …, Xn be n disjoint sets. For 1 ? i ? n and 1 ? j ? h let Aij and Bij be subsets of Xi that satisfy |Aij| ? ri and |Bij| ? si for 1 ? i ? n, 1 ? j ? h, (∪i Aij) ∩ (∪i Bij) = ? for 1 ? j ? h, (∪i Aij) ∩ (∪i Bil) ≠ ? for 1 ? j < l ? h. We prove that h?Πi=1nri+siri. This result is best possible and has some interesting consequences. Its proof uses multilinear techniques (exterior algebra).  相似文献   

12.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

13.
For an n × n Hermitean matrix A with eigenvalues λ1, …, λn the eigenvalue-distribution is defined by G(x, A) := 1n · number {λi: λi ? x} for all real x. Let An for n = 1, 2, … be an n × n matrix, whose entries aik are for i, k = 1, …, n independent complex random variables on a probability space (Ω, R, p) with the same distribution Fa. Suppose that all moments E | a | k, k = 1, 2, … are finite, Ea=0 and E | a | 2. Let
M(A)=σ=1s θσPσ(A,A1)
with complex numbers θσ and finite products Pσ of factors A and A1 (= Hermitean conjugate) be a function which assigns to each matrix A an Hermitean matrix M(A). The following limit theorem is proved: There exists a distribution function G0(x) = G1x) + G2(x), where G1 is a step function and G2 is absolutely continuous, such that with probability 1 G(x, M(Ann12)) converges to G0(x) as n → ∞ for all continuity points x of G0. The density g of G2 vanishes outside a finite interval. There are only finitely many jumps of G1. Both, G1 and G2, can explicitly be expressed by means of a certain algebraic function f, which is determined by equations, which can easily be derived from the special form of M(A). This result is analogous to Wigner's semicircle theorem for symmetric random matrices (E. P. Wigner, Random matrices in physics, SIAM Review9 (1967), 1–23). The examples ArA1r, Ar + A1r, ArA1r ± A1rAr, r = 1, 2, …, are discussed in more detail. Some inequalities for random matrices are derived. It turns out that with probability 1 the sharpened form
lim supn→∞i=1ni(n)|2?6An62? 0.8228…
of Schur's inequality for the eigenvalues λi(n) of An holds. Consequently random matrices do not tend to be normal matrices for large n.  相似文献   

14.
Let g = (g1,…,gr) ≥ 0 and h = (h1,…,hr) ≥ 0, g?, h?J, be two vectors of nonnegative integers and let λ ? J, λ ≥ 0, λ ≡ 0 mod d, where d denotes g.c.d. (g1,…,gr). Define
Δ(λ)=Δ(λg,h):=min?=1rx?h?:x??0,x?∈J,?=1?x?g?
It is shown in this paper that Λ(λ) is periodic in λ with constant jump. If i? {1,…,r} is such that
detgihig?h?? (?1,…r)
then
Δ(λ)+giΔ(λ)+hi
holds true for all sufficiently large λ, λ ≡ 0 mod d.  相似文献   

15.
Let A be an infinite sequence of positive integers a1 < a2 <… and put fA(x) = Σa∈A, a≤x(1a), DA(x) = max1≤n≤xΣa∈A,an1. In Part I, it was proved that limx→+∞supDA(x)fA(x) = +∞. In this paper, this theorem is sharpened by estimating DA(x) in terms of fA(x). It is shown that limx→+∞sup DA(x) exp(?c1(logfA(x))2) = +∞ and that this assertion is not true if c1 is replaced by a large constant c2.  相似文献   

16.
The polynomial functions f1, f2,…, fm are found to have highest common factor h for a set of values of the variables x1, x2,…,xm whose asymptotic density is
1hnd∣hμ(d)Πml = 1 ?(f1, dh)dmΠp∣h1?Πml = 1?(f1, p)pm
For the special case f1(x) = f2(x) = … = fm(x) = x and h = 1 the above formula reduces to Π?(1 ? 1pm) = 1ζ(m), the density if m-tuples with highest common factor 1. Necessary and sufficient conditions on the polynomials f1, f2,…, fm for the asymptotic density to be zero are found. In particular it is shown that either the polynomials may never have highest common factor h or else h is the highest common factor infinitely often and in fact with positive density.  相似文献   

17.
Let Fm×n (m?n) denote the linear space of all m × n complex or real matrices according as F=C or R. Let c=(c1,…,cm)≠0 be such that c1???cm?0. The c-spectral norm of a matrix A?Fm×n is the quantity
6A6ci=Imciσi(A)
. where σ1(A)???σm(A) are the singular values of A. Let d=(d1,…,dm)≠0, where d1???dm?0. We consider the linear isometries between the normed spaces (Fn,∥·∥c) and (Fn,∥·∥d), and prove that they are dual transformations of the linear operators which map L(d) onto L(c), where
L(c)= {X?Fm×n:X has singular values c1,…,cm}
.  相似文献   

18.
The probability generating function (pgf) of an n-variate negative binomial distribution is defined to be [β(s1,…,sn)]?k where β is a polynomial of degree n being linear in each si and k > 0. This definition gives rise to two characterizations of negative binomial distributions. An n-variate linear exponential distribution with the probability function h(x1,…,xn)exp(Σi=1n θixi)f(θ1,…,θn) is negative binomial if and only if its univariate marginals are negative binomial. Let St, t = 1,…, m, be subsets of {s1,…, sn} with empty ∩t=1mSt. Then an n-variate pgf is of a negative binomial if and only if for all s in St being fixed the function is of the form of the pgf of a negative binomial in other s's and this is true for all t.  相似文献   

19.
We improve several results published from 1950 up to 1982 on matrix functions commuting with their derivative, and establish two results of general interest. The first one gives a condition for a finite-dimensional vector subspace E(t) of a normed space not to depend on t, when t varies in a normed space. The second one asserts that if A is a matrix function, defined on a set ?, of the form A(t)= U diag(B1(t),…,Bp(t)) U-1, t ∈ ?, and if each matrix function Bk has the polynomial form
Bk(t)=i=0αkfki(t)Cki, t∈ ?, k∈{1,…,p}
then A itself has the polynomial form
A(t)=i=0d?1fi(t)Ci,t∈?
, where
d=k=1pdk
, dk being the degree of the minimal polynomial of the matrix Ck, for every k ∈ {1,…,p}.  相似文献   

20.
With quasicommutative n-square complex matrices A1,…,As and s-square hermitian G=(gij), relationships are given between the image Σsi,j=1g ijAiHA1j of a linear transformation on Hn being positive definite and the action of H on generalized inertial decompositions of Cn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号