首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Use of the relativistic equation for two electrons in the presence of a radiation field gives corrections to the non-relativistic hamiltonian with less difficulty than use of the Dirac or Breit equation.  相似文献   

2.
An approach to the development of a systematic sequence of relativistic approximations is reviewed. The approach depends on the atomically localized nature of relativistic effects, and is based on the normalized elimination of the small component in the matrix modified Dirac equation. Errors in the approximations are assessed relative to four-component Dirac-Hartree-Fock calculations or other reference points. Projection onto the positive energy states of the isolated atoms provides an approximation in which the energy-dependent parts of the matrices can be evaluated in separate atomic calculations and implemented in terms of two sets of contraction coefficients. The errors in this approximation are extremely small, of the order of 0.001 pm in bond lengths and tens of microhartrees in absolute energies. From this approximation it is possible to partition the atoms into relativistic and nonrelativistic groups and to treat the latter with the standard operators of nonrelativistic quantum mechanics. This partitioning is shared with the relativistic effective core potential approximation. For atoms in the second period, errors in the approximation are of the order of a few hundredths of a picometer in bond lengths and less than 1 kJ mol(-1) in dissociation energies; for atoms in the third period, errors are a few tenths of a picometer and a few kilojoule/mole, respectively. A third approximation for scalar relativistic effects replaces the relativistic two-electron integrals with the nonrelativistic integrals evaluated with the atomic Foldy-Wouthuysen coefficients as contraction coefficients. It is similar to the Douglas-Kroll-Hess approximation, and is accurate to about 0.1 pm and a few tenths of a kilojoule/mole. The integrals in all the approximations are no more complicated than the integrals in the full relativistic methods, and their derivatives are correspondingly easy to formulate and evaluate.  相似文献   

3.
A formalism is presented for the calculation of relativistic corrections to molecular electronic energies and properties. After a discussion of the Dirac and Breit equations and their first-order Foldy-Wouthuysen [Phys. Rev. 78, 29 (1950)] transformation, we construct a second-quantization electronic Hamiltonian, valid for all values of the fine-structure constant alpha. The resulting alpha-dependent Hamiltonian is then used to set up a perturbation theory in orders of alpha(2), using the general framework of time-independent response theory, in the same manner as for geometrical and magnetic perturbations. Explicit expressions are given to second order in alpha(2) for the Hartree-Fock model. However, since all relativistic considerations are contained in the alpha-dependent Hamiltonian operator rather than in the wave function, the same approach may be used for other wave-function models, following the general procedure of response theory. In particular, by constructing a variational Lagrangian using the alpha-dependent electronic Hamiltonian, relativistic corrections can be calculated for nonvariational methods as well.  相似文献   

4.
We have used many-body Green function theory and the two-electron Bethe—Salpeter equation to derive an approximate two-electron position space hamiltonian eigenvalue equation for two electrons in the presence of a closed shell core. The resulting effective hamiltonian is nonlocal, energy independent, hermitian and nonadiabatic. It includes all the core—valence, valence—valence exchange effects, core screening effects and electron—electron correlation effects. If a closed form solution of the equation is difficult because of the need to construct the hamiltonian, a semi-empirical approach can be taken which expresses much of the hamiltonian in terms of known properties of the core. A semi-empirical analysis of this effective hamiltonian is shown to give well-known phenomenological effective hamiltonians and the connections to them. Thus this work can also be viewed as a theoretical justification and extension of the two-electron model potential or pseudopotential theories.  相似文献   

5.
The electric g-tensor is a central quantity for the interpretation of electron paramagnetic resonance spectra. In this paper, a detailed derivation of the 1-electron contributions to the g-tensor is presented in the framework of linear response theory and the second-order Douglas-Kroll-Hess (DKH) transformation. Importantly, the DKH transformation in the presence of a magnetic field is not unique. Whether or not the magnetic field is included in the required Foldy-Wouthuysen transformation, different transformation matrices and, consequently, Hamiltonians result. In this paper, a detailed comparison of both approaches is presented, paying particular attention to the mathematical properties of the resulting Hamiltonians. In contrast to previous studies that address the g-tensor in the framework of DKH theory, the resulting terms are compared to those of the conventional Pauli theory and are given a physical interpretation. Based on these mathematical and physical arguments, we establish that the proper DKH transformation for systems with constant magnetic fields is based on a gauge-invariant Foldy-Wouthuysen transformation, i.e., a Foldy-Wouthuysen transformation including the magnetic field. Calculations using density functional theory (DFT) are carried out on a set of heavy, diatomic molecules, and a set of transition-metal complexes. Based on these calculations, the performance of the relativistic calculation with and without inclusion of picture-change effects is compared. Additionally, the g-tensor is calculated for the Lanthanide dihydrides. Together with the results from the other two molecular test sets, these calculations serve to quantify the magnitude of picture-change effects and elucidate trends across the periodic table.  相似文献   

6.
Methods for perturbation theory of relativistic corrections for an electron in a Coulomb field are divided into three categories: (1) in terms of 4-component spinors; (2) in terms of the ‘large components’ of the Dirac spinor; (3) involving a Foldy-Wouthuysen type transformation, where one attempts to obtain a two-component spinor different from the ‘large component’. In methods of category 1 (the ‘direct perturbation theory’ of paper I of this series, the related approaches by Rutkowski as well as by Gesteszy, Grosse, and Thaller and a somewhat different one by Moore) the wave function, the energy and the Hamiltonian are analytic inc ?2. No divergent terms arise. In methods of category 2 (that of the elemination of the small component as well as a similarity transformation in intermediate normalization) wave function and energy are still analytic inc ?2, but the effective Hamiltonian no longer is. Regularized results can be obtained by controlled cancellation of divergent terms. In category 3 both the effective Hamiltonian and the wave function are highly singular and non-analytic inc ?1. A controlled cancellation of divergent terms is at least very difficult. These pathologic feature survive in the non-relativistic limit and have hence little to do with relativistic effects. They are related to the fact that forr → 0 the sign of the quantum number κ rather than that of the energy determines which component of the Dirac spinor is large and which is small. In the limitr → 0 andc → ∞ the Foldy-Wouthuysen wave function of a 2p 1/2 state is a 1p wave function. Hierarchies of transformations of the Dirac equation and its non-relativistic limit are presented and discussed. Finally the problem of the regularization of effective Hamiltonians on 2-component level ‘for electrons only’ is addressed.  相似文献   

7.
A new method is presented to calculate binding energies and eigenfunctions for molecules, using the relativistic Dirac hamiltonian. A numerical basis set of four component wavefunctions is obtained from atom-like Dirac-Slater wavefunctions. A discrete variational method has been developed and applied to the linear XeF2 molecule.  相似文献   

8.
Exact decoupling of positive- and negative-energy states in relativistic quantum chemistry is discussed in the framework of unitary transformation techniques. The obscure situation that each scheme of decoupling transformations relies on different, but very special parametrizations of the employed unitary matrices is critically analyzed. By applying the most general power series ansatz for the parametrization of the unitary matrices it is shown that all transformation protocols for decoupling the Dirac Hamiltonian have necessarily to start with an initial free-particle Foldy-Wouthuysen step. The purely numerical iteration scheme applying X-operator techniques to the Barysz-Sadlej-Snijders (BSS) Hamiltonian is compared to the analytical schemes of the Foldy-Wouthuysen (FW) and Douglas-Kroll-Hess (DKH) approaches. Relying on an illegal 1/c expansion of the Dirac Hamiltonian around the nonrelativistic limit, any higher-order FW transformation is in principle ill defined and doomed to fail, irrespective of the specific features of the external potential. It is shown that the DKH method is the only valid analytic unitary transformation scheme for the Dirac Hamiltonian. Its exact infinite-order version can be realized purely numerically by the BSS scheme, which is only able to yield matrix representations of the decoupled Hamiltonian but no analytic expressions for this operator. It is explained why a straightforward numerical iterative extension of the DKH procedure to arbitrary order employing matrix representations is not feasible within standard one-component electronic structure programs. A more sophisticated ansatz based on a symbolical evaluation of the DKH operators via a suitable parser routine is needed instead and introduced in Part II of this work.  相似文献   

9.
The transition from the four-component Dirac theory to the exact two-component formalism is considered by using a simple algebraic model of the Dirac hamiltonian. This model is found to correspond to the four-center Hückel matrix and permits to replace the complex operator algebra by very easy matrix operations. This mapping of operators onto number matrices shows how the exact two-component relativistic hamiltonians are derived. It also explains certain conceptual aspects of the relation between four-component and two-component hamiltonians and their eigenfunctions. The generalized Hückel model of a four-center heteroatomic π-electron system can be used to analytically analyze the essential features of a variety of different exact and approximate two-component methods of relativistic quantum chemistry. This article is dedicated to Professor Tadeusz Marek Krygowski on the occasion of his 70th birthday.  相似文献   

10.
In MC SCF theory both the orbitals and the wavefunction expansion coefficients are optimized by minimizing the energy of the system with respect to arbitrary variations of the orbitals and the wavefunction expansion coefficients. This procedure leads to separate equations for the optimal orbitals and to the secular equation for the expansion coefficients which must be solved self-consistently. In a previous paper we discussed the properties of several different choices of localization potential which may be used in the orbital equation. In this paper we derive an alternative native secular equation by making use of the transformation properties of the localized orbitals. This secular equation is considerably simpler than the conventional secular equation and leads to a simplified scheme for the self-consistent solution of the orbital and secular equations.  相似文献   

11.
We suggest an approximate relativistic model for economical all-electron calculations on molecular systems that exploits an atomic ansatz for the relativistic projection transformation. With such a choice, the projection transformation matrix is by definition both transferable and independent of the geometry. The formulation is flexible with regard to the level at which the projection transformation is approximated; we employ the free-particle Foldy-Wouthuysen and the second-order Douglas-Kroll-Hess variants. The (atomic) infinite-order decoupling scheme shows little effect on structural parameters in scalar-relativistic calculations; also, the use of a screened nuclear potential in the definition of the projection transformation shows hardly any effect in the context of the present work. Applications to structural and energetic parameters of various systems (diatomics AuH, AuCl, and Au(2), two structural isomers of Ir(4), and uranyl dication UO(2) (2+) solvated by 3-6 water ligands) show that the atomic approximation to the conventional second-order Douglas-Kroll-Hess projection (ADKH) transformation yields highly accurate results at substantial computational savings, in particular, when calculating energy derivatives of larger systems. The size-dependence of the intrinsic error of the ADKH method in extended systems of heavy elements is analyzed for the atomization energies of Pd(n) clusters (n相似文献   

12.
These are states that go over to the 2pz states of the neutral atoms as the latter recede to infinity; they include the ground state and most of the lower excited states. Then Schrödinger's equation and the operators for the physical quantities may be projected on the space of spin functions. A method is given for calculating the projected hamiltonian and operators as a rapidly convergent series in the number of interacting centers. Pair interactions are shown to play the main part in the spin hamiltonian. The convergence is examined for the series for the momentum and spin-density operators. Schrödinger's equation with the spin hamiltonian then gives a complete solution of the problem; as in the valence-bond method, the task is facilitated by the fact that the subspaces of defined system spin may be distinguished in spin space. A method is given for selecting the states from the measured terms for the molecule. It is shown that all absorption lines corresponding to excitation of such states should be weak for alternant hydrocarbons.  相似文献   

13.
The monoexcited configuration interaction (MCI) spectrum of an infinite polyene with equal bondlengths is discussed in the framework of the π-electron approximation employing a Hubbard model hamiltonian. The MCI eigenvalue problem is reduced to a relatively simple equation for the excitation energies. The analysis of this equation shows that the monoexcitation spectrum of an infinite polyene differs noticeably from its approximation as orbital energy differences.  相似文献   

14.
Current theories of unimolecular reaction rates are based on the transition state method which replaces internal reactant dynamics by an assumption of internal equilibrium. The present work is devoted to the development of generalized transition state method which allows effects such as nonergodicity and non-exponential decay to be accounted for within a simple theoretical framework. The derivation is quantum mechanical and not limited by any weak perturbation assumption. An effective hamiltonian is constructed for the reactant dynamics. The loss of amplitude due to reaction is accounted for by a dissipative term in the hamiltonian which is obtained on a phenomenological basis. The diagonalization of the hamiltonian allows the decay of reactant state to be predicted. The decay information is then used to set up a non-markovian master equation which in turn yields the rate coefficient for the reaction. The accuracy of the method is tested in one-dimensional model calculations in which particular attention is paid to decay by quantum mechanical tunneling through a potential barrier.  相似文献   

15.
A molecular one-electron Dirac equation is derived by variation of a total energy density functional, whereby the one-electron energies are ascribed a physical meaning. The multiple scattering formalism for molecular systems is relativistically generalized for the determination of molecular four-component spinors. Optimal spinors and one-electron energies for a finite basis set are derived by variation of a functional. The form of the secular equation is very similar to the nonrelativistic form. Using scattering theory, the quantities appearing in the secular equation are interpreted.  相似文献   

16.
A discussion of the factorization by constants of the motion of the secular equation is given and formulas are obtained which relate these factors to the traces of certain operators. These traces are independent of the specific basis in the vector space, and, hence, so are the factors of the secular equation. The results are also applied to the case of factoring by a finite symmetry group.  相似文献   

17.
18.
A stationary state of maximal entropy is derived as a solution of a variational procedure. Generators of a continuous group are used as the constraints. The self-consistent hamiltonian is linear in these generators so that the solution of the self-consistency problem is replaced by a solution of an algebraic equation. The familiar Hartree-Fock procedure is a special case.  相似文献   

19.
In this paper, a modified version of the homotopy perturbation method, which has been applied to non-linear oscillations by V. Marinca, is used for calculation of axial secular frequencies of a non-linear ion trap with hexapole and octopole superpositions. The axial equation of ion motion in a rapidly oscillating field of an ion trap can be transformed to a Duffing-like equation. With only octopole superposition the resulted non-linear equation is symmetric; however, in the presence of hexapole and octopole superpositions, it is asymmetric. This modified homotopy perturbation method is used for solving the resulting non-linear equations. As a result, the ion secular frequencies as a function of non-linear field parameters are obtained. The calculated secular frequencies are compared with the results of the homotopy perturbation method and the exact results. With only hexapole superposition, the results of this paper and the homotopy perturbation method are the same and with hexapole and octopole superpositions, the results of this paper are much more closer to the exact results compared with the results of the homotopy perturbation method.  相似文献   

20.
A general formalism in order to deal with SCF eigenspace manipulation is developed. It can be shown that the initial generalized secular equation splits into a set of secular equations, each of which in turn can modify independently any predetermined subset of the SCF manifold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号