首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Yb2O3 polycrystals with a size of up to 10 mm are synthesized using the sintering and melting of the ultrapure Yb2O3 powders by the CO2-laser radiation with the power P L ≤ 100 W at the wavelength λ = 10.6 μm at the melting point T m = 2703 K, forming due to surface tension in melt, and crystallization in air. The analysis of the polycrystal microstructure using the methods of optical and electron microscopy and X- ray diffractometry shows that perfect oxide crystallites are formed in the course of crystallization after melting-through. The transformation of the luminescence and selective heat radiation (SHR) spectra of the Yb2O3 polycrystals is studied under the resonant excitation at λ ≈ 975 nm using a laser diode and the laser heating at the wavelength λ = 10.6 μm. When the resonant excitation power of the Yb3+ ions increases from 0.15 to 4.5 W, the Stokes luminescence of the Yb2O3 polycrystals is sequentially transformed into SHR and the thermal radiation of the crystal lattice. The transformation of the emission spectra of the Yb2O3 polycrystals with an increase in the laser heating intensity by about four orders of magnitude can be represented as the low-temperature heat radiation, spectral burst of the thermodynamically nonequilibrium SHR of the Yb3+ ions, and the high-temperature radiation of the crystal lattice. The temperature dependence of the luminescence spectra and SHR of the Yb2O3 polycrystals on the intensity of the laser and laser-thermal excitation and the concentration quenching of the Yb3+ luminescence in oxides indicate the key role of the interaction of the f-electron shell of the Yb3+ ions with the natural oscillations of the crystal lattice in the processes of the multiphonon excitation and nonradiative (multiphonon) and radiative (vibronic) relaxation.  相似文献   

2.
The spectral and luminescent characteristics of samples of Y2O3:Nd3+ ceramics obtained from different precursors under different preparation conditions (the concentration of an HfO2 compacting additive, the temperature and time of synthesis) are studied at 300 and 77 K. It is shown that the spectral positions of absorption and luminescence lines of ceramics correspond to those of a Y2O3:Nd3+ single crystal. At the same time, the absorption and luminescence spectra show an inhomogeneous broadening, characteristic of disordered crystals and glass. The energies of the 4 I 9/2 and 4 F 3/2 Stark states of the Nd3+ ion are calculated. The calculation results nearly coincide with the data from the literature for the Y2O3:Nd3+ single crystal and transparent ceramics. Samples containing the compacting additive show additional lines, whose intensities correlate with its concentration and the method of preparation of Y2O3:Nd3+ ultradispersed powders. It is assumed that these lines are related to the fact that either Nd3+ ions enter the composition of the HfO2 compacting additive or Hf4+ ions are present in the nearest environment of Nd3+ ions at the boundaries of granules enriched with HfO2.  相似文献   

3.
The possibility of synthesis and characteristics of highly transparent Y2O3 ceramics doped with Nd3+ and Yb3+ were studied. The ceramics crystal structure was disordered for the first time by simultaneously substituting Y3+ cations by Lu3+ or Sc3+ isovalent ions and Zr4+ heterovalent ions. The developed technique allowed synthesis of highly transparent Nd3+:Y2O3, Nd3+: Y2O3 + 6 mol % ZrO2, Nd3+: (Lu0.25Y0.75)2O3 + 6 mol % ZrO2, Nd3+:(Sc0.25Y0.75)2O3 + 6 mol % ZrO2, and Yb3+:(Sc0.25Y0.75)2O3 + 6 mol % ZrO2 ceramics with transmittance to 82.2%. It was shown that introduction of iso- and heterovalent additives Sc2O3, Lu2O3, and ZrO2 into Nd3+:Y2O3 decreases average crystallite sizes to ∼1 μm and reduces the pore content, thus making it possible to produce pore-free ceramics. These additives broaden the spectral band of the 4 F 3/24 I 11/2 transition of the neodymium ion to 40 nm.  相似文献   

4.
Undoped and different concentration Nd3+ doped SrNb2O6 powders with columbite structure were synthesized by molten salt process using a mixture of strontium nitrate and niobium (V) oxide and NaCl-KCl salt mixture as a flux under relatively low calcining temperature. X-ray diffraction analysis results indicated that SrNb2O6 phases found to be orthorhombic columbite single phase for undoped, 0.5 and 3 mol% Nd3+ doping concentrations. Phase composition of the powders was examined by SEM-EDS analyses. Radioluminescence properties of Nd3+ doped samples from UV to near-IR spectral region were studied. The emissions increased with the doping concentration of up to 3 mol%, and then decreased due to concentration quenching effect. There is a sharp emission peak around 880 nm associated with 4F5/2 → 4I9/2 transition in the Nd3+ ion between 300 and 1100 nm. The broad emission band intensity was observed from 400 to 650 nm where the peak intensities increased by increasing Nd3+ doping concentration. All the measurements were taken under the room temperature.  相似文献   

5.
We measured the absorption and luminescence spectra of Nd3+ ions in an inorganic solvent POCl3-BCl3. The spectra were analyzed in terms of the Judd-Ofelt theory. We calculated the Judd-Ofelt parameters, oscillator strengths, spontaneous emission probabilities, luminescence quantum yield, and the stimulated emission cross section for the laser transition 4 F 3/24 I 11/2 of the neodymium ion in a POCl3-BCl3-Nd3+ solution.  相似文献   

6.
Marchenko  V. M. 《Laser Physics》2011,21(2):383-388
The dependence of the spectra of the near-IR and visible selective heat radiation (SHR) of the Yb2O3 polycrystals that are synthesized using the laser thermal method on the excitation intensity of the CW electric discharge CO2 laser at the wavelength λ = 10.6 μm is experimentally studied. The SHR spectra are determined by the multiphonon excitation of the vibronic states of the 2 F 5/2 term in the Yb3+ ions and the radiative transitions to the vibronic states of the ground term 2 F 7/2.The laser heating of the polycrystals to the melting point causes the anomalous growth of the SHR spectral peaks in the wavelength range λ ≥ 1040 nm due to an increase in the intensity related to an increase in the probabilities of the radiative vibronic transitions owing to the thermal increase in the phonon density. The effective conversion of the thermal energy of the Yb2O3 polycrystals into the SHR indicate the significant role of the radiative cooling of surface.  相似文献   

7.
Nd3+:Y3Al5O12 (Nd:YAG) powders were prepared by the Pechini method in the temperature range of 800 to 1400 °C. The pure garnet phase of the obtained materials was confirmed by XRD studies. The size of the grains was controlled by the annealing temperature of the samples. Their morphologies were investigated by TEM and porosity measurements (BET). The effect of annealing temperature on the morphology and luminescence properties of Nd:YAG nanocrystallites was studied, and the results were compared to the properties of a Nd:YAG single crystal. A significant enhancement of the 4F3/24I9/2/4F3/24I11/2 intensity ratio with decreasing grain size was observed. It was found that the decay times of the Nd3+ luminescence depends on the specific surface and is significantly longer for well crystallized nanocrystalline grains than for single crystals having the same concentration of Nd3+ ions. The role of crystallinity and specific surface on the radiative processes is analyzed. PACS 78.55.-m; 78.20.Ci; 78.67.Bf; 78.68.+m  相似文献   

8.
The dependence of the selective emission (SE) spectra of erbium oxide (Er2O3) in the visible and near-IR spectral ranges on the laser excitation intensity at a wavelength of 10.6 μ m is experimentally studied. The intensity ratio for the Er3+ electronic and vibronic transitions in the SE spectra is varied with an increase in the laser intensity to 10 kW/cm2. The mechanism for the multiphonon fluctuation excitation of electronic states and a possibility for the SE application in the observation of the thermo-photo-laser effect are discussed.  相似文献   

9.
Experimental data for cw lasing from a compact solid-state laser based on a neodymium-doped calcium-gallium-germanium-garnet crystal (Ca3Ga2Ge3O12:Nd3+) at a wavelength of 1.06 μm in the case of intense diode pumping are reported. The laser output reaches 0.7 W for a cavity 15 mm long and an active element 1 mm thick. It is shown that the output power is limited by a thermal lens placed in the active element.  相似文献   

10.
Nanorods and nanoplates of Y2O3:Eu3+ powders were synthesized through the thermal decomposition of the Y(OH)3 precursors using a microwave-hydrothermal method in a very short reaction time. These powders were analyzed by X-ray diffraction, field emission scanning electron microscopy, Fourrier transform Raman, as well as photoluminescence measurements. Based on these results, these materials presented nanoplates and nanorods morphologies. The broad emission band between 300 and 440 nm ascribed to the photoluminescence of Y2O3 matrix shifts as the procedure used in the microwave-hydrothermal assisted method changes in the Y2O3:Eu3+ samples. The presence of Eu3+ and the hydrothermal treatment time are responsible for the band shifts in Y2O3:Eu3+ powders, since in the pure Y2O3 matrix this behavior was not observed. Y2O3:Eu3+ powders also show the characteristic Eu3+ emission lines at 580, 591, 610, 651 and 695 nm, when excited at 393 nm. The most intense band at 610 nm is responsible for the Eu3+ red emission in these materials, and the Eu3+ lifetime for this transition presented a slight increase as the time used in the microwave-hydrothermal assisted method increases.  相似文献   

11.
We report the experimental observation of random wavelength emission and intensity-dependent central-wavelength shift in a diode-pumped Yb3+-doped Y2O3 ceramic laser. We show experimentally that, like conventional lasers, the emission of the laser has fixed well-defined transverse modes; however, its instantaneous emission wavelengths change randomly with time. The central wavelength of the laser emission also shifts with the intracavity light intensity. A model was developed to describe the spectral behavior of Yb3+-doped lasers. We show that the observed random wavelength emission and central lasing wavelength shift of the laser could be well explained based on the strong reabsorption of light in the gain medium. PACS 42.55.Rz; 42.60.Mi; 42.55.Xi  相似文献   

12.
Efficient CW intracavity frequency doubling of a diode-end-pumped Nd:GGG laser operating on 4 F 3/24 I 9/2 transitions at 937 nm has been demonstrated. A 10-mm-long BiB3O6(BiBO) crystal, cut for critical type I phase matching, was used for the intracavity frequency doubling of the laser. A maximum output power of 350 mW in the blue spectral range at 469 nm has been achieved at 18.3 W of pump power. The M2 factors are 1.18 and 1.29 in X and Y directions, respectively.  相似文献   

13.
The spectral properties of a promising laser material, ternary molybdate Li3Ba2Gd3(MoO4)8:Nd3+, are studied (i.e., its optical absorption spectra, luminescence spectra, kinetic of luminescence decay, and temperature dependence of luminescence). Luminescence of the crystalline matrix is detected, and the temperature dependence of its intensity and reabsorption by neodymium are investigated.  相似文献   

14.
The luminescence spectra of single-crystal films and bulk crystals of yttrium-aluminum garnet Y3Al5O12 and Ce3+-activated Y3Al5O12 were investigated. It was shown that the room-temperature luminescence intensity of the Ce3+-free single-crystal Y3Al5O12 film was considerably lower than that of the bulk crystals, while the luminescence intensity of the Ce3+ ions in the Y3Al5O12:Ce films was considerably higher than that one for the corresponding bulk crystal.  相似文献   

15.
Ho3+–Yb3+ co-doped Y2O3 nanocrystals were synthesized by firing hydroxy carbonate precursors. Yb3+-concentration-dependent up-conversion properties of Ho3+ in Y2O3 nanocrystals have been investigated. The relative intensity of up-converted red emission increases more quickly than that of the green and the near-infrared ones with the enhancement of the concentration of Yb3+. It is believed that the energy process 5 S 2 (5F4) (Ho) + 5 I 7 (Ho) →5 I 6 (Ho)+5 F 5 (Ho) plays an important role in the population of the 5 F 5 level of Ho3+. The result indicates that the intensity ratio of the green emission to the red one can be tuned by changing the sensitizer concentration. PACS 78.55.-m  相似文献   

16.
Y2-xGdxO3:Eu3+ luminescent thin films have been grown on Al2O3(0001) substrates using pulsed laser deposition. Films grown under different deposition conditions have been characterized using microstructural and luminescence measurements. The crystallinity, surface morphology and photoluminescence (PL) of the films are highly dependent on the amount of Gd present. The photoluminescence (PL) brightness data obtained from Y2-xGdxO3:Eu3+ films grown under optimized conditions have indicated that Al2O3(0001) is one of the most promising substrates for the growth of high-quality Y2-xGdxO3:Eu3+ thin-film red phosphors. In particular, the incorporation of Gd into the Y2O3 lattice could induce a remarkable increase of PL. The highest emission intensity was observed with Y1.35Gd0.60Eu0.05O3, whose brightness was increased by a factor of 3.1 in comparison with that of Y2O3:Eu3+ films. This phosphor may be promising for application in flat-panel displays. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

17.
The electron paramagnetic resonance (EPR) spectra of Ce3+ and Nd3+ impurity ions in unoriented powders of the YBa2Cu3O6.13 compound are observed and interpreted for the first time. It is demonstrated that, upon long-term storage of the samples at room temperature, the EPR signals of these ions are masked by the spectral line (with the g factor of approximately 2) associated with the intrinsic magnetic centers due to the significant increase in its intensity.  相似文献   

18.
It is shown that the CO + O2 → CO2 catalytic reaction on the surface of Y2O3-Eu may lead to electronic excitation of Eu3+ luminescence centers due to the chemical energy release. The luminescence observed allows one to study the interaction between molecular particles of ultralow (thermal) energies with surface by optical methods.  相似文献   

19.
Y. L. Li 《Laser Physics》2011,21(11):1855-1858
We report an efficient laser emission on the 1064 nm 4 F 3/2 to 4 I 11/2 transition in mixed vanadate crystal Nd:Y0.36Gd0.64VO4 under the pump with diode laser at 880 nm. Continuous wave (CW) 10.7 W output power at 1064 nm is obtained under 17.8 W of incident pump power; the slope efficiency with respect to the incident pump power was 71.2%. Moreover, intracavity frequency doubling with LiB3O5 (LBO) nonlinear crystal yielded 4.6 W of green light at 532 nm. An optical-to-optical efficiency with respect to the incident pump power was 25.8%.  相似文献   

20.
Terbium doped Y2O3 planar waveguides were fabricated by sol–gel process and dip-coating using yttrium acetate as precursor. Two different doping modes were compared, i.e. introduction in the sol of dispersed Tb3+ions from dissolved Tb(NO3)3, or of nanoparticles of Tb2O3 or [Y2O3:50% Tb] from an alcoholic suspension. The chemical and nanostructural properties were analyzed by infrared spectroscopy, transmission electron microscopy and X-ray diffraction. The Tb3+ fluorescence properties were studied as a function of temperature and atmosphere of the thermal treatments, and of the Tb3+ concentration. The fluorescence properties are discussed in relation to the quenching mechanisms induced by Tb4+ transformation, residual OH groups, and crystallites size and structure. Optical propagation losses of the Tb doped Y2O3 planar waveguides related to the doping modes and Tb3+ concentration are presented. Doping sol–gel films by nanoparticles is shown to be a valuable alternative to the conventional doping from dissolved terbium salt. PACS 81.21.Fw; 84.40.Az; 78.67.Bf  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号