首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Amorphous carbon nitride thin films were synthesized by pulsed laser deposition combined with electron cyclotron resonance (ECR) microwave discharge in nitrogen gas. The ECR discharge supplies active nitrogen species in the deposition environment and to the growing film surface, enhancing the film growth in complex processes accompanied by chemical reaction. The synthesized films were characterized by Rutherford backscattering spectroscopy (RBS), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy. The films were determined to consist purely of carbon and nitrogen with a nitrogen concentration of 42%, and have a thickness of 550 nm over which carbon and nitrogen are well distributed. Structural characterizations based on XPS, FTIR and Raman analysis showed that these films appear to contain several bonding configurations between carbon and nitrogen with a small amount of C≡N bonds compared with other bonding states. Received: 31 August 2000 / Accepted: 12 December 2000 / Published online: 23 May 2001  相似文献   

2.
It is demonstrated that a liquid hydrocarbon precursor, cyclohexane, is appropriate for laser-induced carbon deposition. Amorphous hydrogenated carbon films (a-C:H) were deposited by KrF excimer laser irradiation of single-crystal silicon surface immersed under cyclohexane. The technique is simple and easy to operate. IR absorption spectra of the deposited films confirmed the presence of carbon in the diamond phase. Raman and XPS studies showed diamond-like character of the deposited films. Moreover, these two studies provided strong evidence that laser fluence played an important role in the formation of DLC bondings and the quality of the deposited films. Received: 15 September 1998 / Accepted: 5 January 1999 / Published online: 5 May 1999  相似文献   

3.
Amorphous nitrogen-rich carbon nitride (CNx) films have been prepared by inductively coupled plasma chemical vapour deposition (ICP-CVD) utilizing transport reactions from a solid carbon source. The nitrogen atomic fraction N/(C+N) is about 1 or even higher as detected by various surface and bulk sensitive methods. An investigation of the chemical bonding structure showed that the films are composed of >C=N units with a small fraction of C≡N groups. Based on these findings, several structural units derived from cis- and trans-conjugated carbon–nitrogen chains are proposed. The optical properties of the CNx films were studied by transmission spectroscopy and spectral ellipsometry; the optical Tauc gap was determined to 2.1±0.05 eV. The photoluminescence characteristics were measured at three different excitation wavelengths (476, 488 and 515 nm) and revealed two individual contributions. These data are interpreted in terms of the different structural units comprising the nitrogen-rich CNx films. Received: 14 July 2000 / Accepted:17 July 2000 / Published online: 22 November 2000  相似文献   

4.
Thin nanocrystalline diamond/amorphous carbon (NCD/a-C) composite films and amorphous diamond-like carbon (DLC) films were prepared by three methods: microwave plasma chemical vapour deposition (MWCVD) from methane/nitrogen mixtures (NCD/a-C), RF magnetron sputtering of a pure graphite target in argon/methane ambients, and pulsed laser deposition (PLD) in vacuum or argon atmosphere (DLC). The films prepared by the three techniques were comprehensively characterized with respect to their bonding structure by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). PACS 81.05.Uw; 82.80.Pv  相似文献   

5.
Carbon nitride films with high nitrogen content were prepared by reactive pulsed-laser deposition at nitrogen partial pressures varying from 0.1 to 20.0 Torr. It was found that the nitrogen content in the films first increases with increase of the nitrogen pressure, reaches a maximum of 46 at. % at 5.0 Torr, and then decreases to 37 at. % at 20.0 Torr. The almost pure carbon nitride films were systematically characterized by using X-ray photoelectron spectroscopy (XPS) concerning the core-level and valence-band structures. Some fingerprint information, which shows the role of nitrogen in controlling the electronic structure of carbon nitride films, was found based on the XPS studies. With enhancing the nitrogen incorporation, both the binding energy and the peak intensity of the core-level and the valence-band spectra vary systematically as a function of nitrogen content in the films. Received: 26 June 2000 / Accepted: 26 June 2000 / Published online: 20 September 2000  相似文献   

6.
Diamond-like-carbon (DLC) films have been deposited on Si, aluminum and indium tin oxide-coated glass from several organic solvents with pulse-modulated power. The films are characterized by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. XPS spectra show that the main composition of the films is carbon and Raman spectra show that the films are typical DLC films and a high potential is preferable in the formation of sp 3-structure carbon. Comparing the results from different solvents and different substrates we deduce that the methyl group of the solvents has a critical function in forming the DLC films. However, the formation process and the characters of the films, such as appearance, resistivity and thickness, are mainly determined by the substrate. We may call this deposition a substrate-controlled reaction. Received: 31 May 2000 / Accepted: 9 January 2001 / Published online: 3 April 2001  相似文献   

7.
High-quality single-walled carbon nanotubes (SWNTs) are synthesized by chemical vapor deposition (CVD) of methane on silicon-dioxide substrates at controlled locations using patterned catalytic islands. With the synthesized nanotube chips, microfabrication techniques are used to reliably contact individual SWNTs and obtain low contact resistance. The combined chemical synthesis and microfabrication approaches enable systematic characterization of electron transport properties of a large number of individual SWNTs. Results of electrical properties of representative semiconducting and metallic SWNTs are presented. The lowest two-terminal resistance for individual metallic SWNTs (≈5 μm long) is ≈16.5 kΩ measured at 4.2 K. Received: 17 May 1999 / Accepted: 18 May 1999 / Published online: 14 July 1999  相似文献   

8.
Nitrogen-doped amorphous hydrogenated carbon films (a-C:H) were prepared by mixing nitrogen gas and benzene during dc plasma discharge deposition. The growth rate of the film decreases strongly with increasing nitrogen content in the mixture. The nitrogen concentration in the films was determined by nuclear reaction analysis (NRA) and Auger electron spectroscopy (AES) using suitable calibration samples. The results of AES measurements are generally consistent with NRA values. Nitrogen incorporation in the a-C:H films shows pronounced doping effects as reflected in their optical and electrical properties.Dedicated to Professor J. P. F. Sellschop for his 60th birthday  相似文献   

9.
Diamond films were successfully synthesized on aluminum nitride(AlN) ceramic substrates by hot-filament chemical vapor deposition (HFCVD) method. The thermal conductivity of the diamond film/aluminum nitride ceramic (DF/AlN) composites was studied by photothermal deflection (PTD) technique. It has reached 2.04 W/cm K, 73% greater than that of AlN ceramic. Compared with the measurement of scanning electron microscopy (SEM) and Raman spectroscopy, the influence of diamond films on the thermal conductivity of the composites was pointed out. The adhesion and the stresses were also studied. The unusual stability and very good adhesion of the diamond film on AlN ceramic substrate obtained is attributed to the formation of aluminum carbide. Received: 24 March 1998 / Accepted: 8 March 1999 / Published online: 5 May 1999  相似文献   

10.
Polypyrrole/carbon nanotube nanoscale composites were successfully fabricated by electrochemical deposition of polypyrrole over each of the carbon nanotubes in well-aligned large arrays. The thickness of the polypyrrole coating can be easily controlled by the value of the film-formation charge. For both thin (low film-formation charge) and thick (high film-formation charge) films, the polypyrrole coating on the surface of each nanotube is very uniform throughout the entire length, as observed by transmission electron microscopy. Received: 2 May 2001 / Accepted: 4 May 2001 / Published online: 20 June 2001  相似文献   

11.
The humidity sensitive properties of carbon nitride (CNx) films deposited by two methods, inductively coupled plasma chemical vapour deposition utilizing transport reactions and pulsed laser deposition combined with an rf discharge, have been investigated. For this purpose capacitance humidity sensors with a CNx detecting element have been fabricated and tested. Fast and significant responses toward moisture are registered by the changes of the electrical parameters. The CNx films sensing mechanism has been discussed. The results obtained show unambiguously that CNx films appear to be a promising candidate as a humidity sensitive element in up-to-date electronic noses. Received: 6 December 1999 / Accepted: 7 January 2000 / Published online: 24 March 2000  相似文献   

12.
Electrically conducting channels in an insulating carbon matrix were produced by 140-MeV Xe ion irradiation. The high local energy deposition of the individual ions along their pathes causes a rearrangement of the carbon atoms and leads to a transformation of the insulating, diamond-like (sp3-bonding) form of carbon into the conducting, graphitic (sp2-bonding) configuration. The conducting ion tracks are clearly seen in the current mapping performed with an atomic force microscope (AFM). These conducting tracks are of possible use in field emission applications. Received: 4 May 1999 / Accepted: 5 May 1999 / Published online: 1 July 1999  相似文献   

13.
Thin layers of hydrogenated amorphous carbon were prepared by using organic hydrocarbon source, xylene (C8H10), in plasma-enhanced chemical vapor deposition (PECVD) system. The microstructures were characterized by using Fourier-transform infrared and Raman scattering spectra. The appearance of a sharp vibration signal in 1600 cm-1 strongly suggests the existence of sp2 carbon clusters with aromatic rings. With increasing the deposition rf power, the content of these aromatic structures is increased in the films. In contrast to a broad single PL peak in methane (CH4)-baseda-C:H films, the PL band of xylene-based a-C:H films contains multiple peaks in blue-green light region, which is influenced by rf power. We tentatively attributed it to the radiative recombination of electron-hole pairs through some luminescent centers associated with aromatic structures. Received: 26 April 2000 / Accepted: 9 May 2000 / Published online: 13 September 2000  相似文献   

14.
A simple thermal chemical vapor deposition technique is employed for the pyrolysis of a natural precursor “camphor” and deposition of carbon films on alumina substrate at higher temperatures (600-900 °C). X-ray diffraction measurement reveals the amorphous structure of these films. The carbon films properties are found to significantly vary with the deposition temperatures. At higher deposition temperature, films have shown predominately sp2-bonded carbon and therefore, higher conductivity and lower optical band gap (Tauc gap). These amorphous carbon (a-C) films are also characterized with Raman and X-ray photoelectron spectroscopy. In addition, electrical and optical properties are measured. The thermoelectric measurement shows these as-grown a-C films are p-type in nature.  相似文献   

15.
Super-hard and elastic carbon nitride films have been synthesized by using an off-plane double-bend filtered cathodic vacuum arc combined with a radio-frequency nitrogen-ion beam source. A nanoindenter was used to determine the micromechanical properties of the deposited films. X-ray photoelectron spectroscopy was used to study the composition and bonding structure of the deposited films. The influence of nitrogen ion energy on the structure and micromechanical properties of the deposited films was systematically studied. As the nitrogen ion energy is increased, the microhardness, Young’s modulus and elastic recovery also increase, reaching a maximum of 47 GPa, 400 GPa, and 87.5%, respectively, at a nitrogen ion energy of 100 eV. Further increase in nitrogen ion energy results in a decrease in microhardness, Young’s modulus and elastic recovery of the deposited films. The formation of five-membered rings, as indicated by XPS, which causes bending of the basal planes and forms a three-dimensional rigid covalent bond network, contributes to the super-hardness, Young’ s modulus and high elastic recovery of the films deposited at a nitrogen ion energy of 100 eV. Revised version: 29 October 2001 / Accepted: 7 November 2001 / Published online: 2 May 2002  相似文献   

16.
A systematic study of the chemical bonding in hydrogenated amorphous germanium–carbon (a-Ge1-xCx:H)alloys using X-ray photoelectron spectroscopy (XPS) is presented. The films, with carbon content ranging from 0 at. % to 100 at. %, were prepared by the rf co-sputtering technique. Raman spectroscopy was used to investigate the carbon hybridization. Rutherford backscattering spectroscopy (RBS) and XPS were used to determine the film stoichiometry. The Ge 3d and C 1s core levels were used for investigating the bonding properties of germanium and carbon atoms, respectively. The relative concentrations of C–Ge, C–C, and C–H bonds were calculated using the intensities of the chemically shifted C 1s components. It was observed that the carbon atoms enter the germanium network with different hybridization, which depends on the carbon concentration. For concentrations lower than 20 at. %, the carbon atoms are preferentially sp3 hybridized, and approximately randomly distributed. As the carbon content increases the concentration of sp2 sites also increases and the films are more graphitic-like. Received: 4 May 1999 / Accepted: 24 November 1999 / Published online: 24 March 2000  相似文献   

17.
Carbon nitride films were deposited by pulsed laser ablation of a graphite target under a nitrogen atmosphere at room temperature. A direct current discharge apparatus was used to supply active nitrogen species during the deposition of carbon nitride films. The composition and bonding structure of carbon nitride films were determined by Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy. The incorporation of nitrogen atoms in the films is greatly improved by the using of a dc glow discharge. The ratio N/C can reach 0.34 at the discharge voltage of 400 V. Six peaks centered at 1025 cm-1, 1226 cm-1, 1381 cm-1, 1534 cm-1, 1629 cm-1, and 2200 cm-1 can be clearly distinguished from the FTIR spectra of the deposited films, which indicates the existence of C–N, C=N, and C≡N bonds. The fraction of sp2 C, C≡N bonds, and C=N bonds in the deposited films increases with increasing discharge voltage. Deconvolution results of C 1s and N 1s spectra also indicate that nitrogen atoms in the films are chemically bonded to sp1 C, sp2 C, and sp3 C atoms. Most of the nitrogen atoms are bonded to sp2 C atoms. Increasing the discharge voltage leads to a decrease of the fraction of nitrogen atoms bonded to sp2 C and the fraction of amorphous carbon; however, it leads to an increase of the fraction of nitrogen atoms bonded to sp3 C and the fraction of sp2 C and sp3 C atoms bonded to nitrogen atoms. Received: 7 June 2000 / Accepted: 19 February 2001 / Published online: 27 June 2001  相似文献   

18.
The effect of nitrogen addition and laser fluence on the atomic structure of amorphous carbon films (a-C) synthesized by femtosecond pulsed laser deposition has been studied. The chemical bonding in the films was investigated by means of X-ray photoelectron (XPS) and Raman spectroscopies. XPS studies revealed a decrease in the sp3 bonded carbon sites and an associated increase in the N-sp2C bonding sites with increasing nitrogen content in the CNx films. An increase in laser fluence from 0.36 to 1.7 J/cm2 led to a rise in sp3C sites. These results were further confirmed by Raman spectroscopy. The ID/IG ratio increased monotonically and G line-width decreased with the increase of nitrogen content in the films indicating a rise in either the number or the size of the sp2 clusters. Furthermore a visible excitation wavelength dependence study established the resonant Raman process in a-C and CNx films. PACS 81.05.Uw; 81.15.Fg; 82.80  相似文献   

19.
Aligned carbon nanotube (CNT) films are potential field emitters for large-area flat panel displays. However, the distribution of emission areas in the CNT films is quite non-uniform because of inhomogeneous nanotube growth, which is hard to avoid using the conventional chemical vapor deposition (CVD) method. Here we show that the emission uniformity of CNT films can be improved simply by reducing the film thickness (thinning) or the nanotube density (diluting). The thickness and density of CNT films could be controlled by controlling the CNT growth time and temperature. Received: 12 June 2001 / Accepted: 27 October 2001 / Published online: 23 January 2002  相似文献   

20.
Towards processing of carbon nanotubes for technical applications   总被引:5,自引:0,他引:5  
Production methods for carbon nanotubes are now well established and allow their synthesis on a scale of grams per day. For many potential applications of this unique material, its purification still remains a crucial problem. In this article various purification methods for single- and multi-wall carbon nanotubes are reviewed. These methods are compared in terms of their capacity, efficiency, and effects on the tubes. In addition, the use of Raman spectroscopy for monitoring the chromatographic purification of single-wall nanotubes is described. Received: 17 May 1999 / Accepted: 18 May 1999 / Published online: 29 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号