首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dipalladium complexes, [PdCl(μ-MeN{P(OR)2}2)]2 (R = CH2CF3, 1a; Ph, 1b) react with [Mo25-C5H5)2(CO)6] in boiling benzene to afford the molybdenum-palladium heterometallic complexes, [(η5-C5H5)(CO)Mo(μ-MeN{P(OR)2}2)2PdCl] (R = CH2CF3, 3a; Ph, 3b), [(η5-C5H5)Mo(μ3-CO)2(μ-MeN{P(OR)2}2)2Pd2Cl], (R = CH2CF3, 5a; Ph, 5b), [(η5-C5H5)(Cl)Mo(μ2-CO)(μ2-Cl)(μ-MeN{P(OR)2}2)PdCl], (R = CH2CF3, 6a; Ph, 6b) and also the mononuclear complex [Mo(CO)Cl(η5-C5H5)(κ2-MeN{P(OR)2}2)], (R = Ph, 4b). These complexes have been separated by column chromatography and are characterised by elemental analysis, IR, 1H, 31P{1H} NMR data. The structures of 1a, 3a, 4b, 5b and 6a have been confirmed by single crystal X-ray diffraction. The CO ligands in 5b and 6a adopt a semi-bridging mode of bonding; the Mo-CO distances (1.95-1.97 Å) are shorter than the Pd-CO distances (2.40-2.48 Å). The Pd-Mo distances fall in the range, 2.63-2.86 Å. The reaction of [Mo25-C5H5)2(CO)6] with MeN{P(OPh)2}2 in toluene gives [Mo2(CO)45-C5H5)21-MeN{P(OPh)2}2)2] (2) in which the diphosphazane acts as a monodentate ligand.  相似文献   

2.
The reaction of the cluster HOs3(CO)10(??-SC6H4Me-4) (1) with the diphosphine 4,5-bis(diphenylphosphino)-4-cyclopentadiene-1,3-dione (bpcd) has been investigated. 1 reacts with bpcd at room temperature in the presence of Me3NO to give the isomeric clusters 1,2-HOs3(CO)8(bpcd)(??-SC6H4Me-4) (2a) and 1,1-HOs3(CO)8(bpcd)(??-SC6H4Me-4) (2b). Clusters 2a and 2b have been isolated, and the molecular structure of each compound has been established by X-ray crystallography. The X-ray structure of 2a confirms the coordination of one of the non-hydride-bridged Os?COs vectors by the bpcd ligand, while the structure of 2b exhibits a chelating bpcd ligand that is bound to one of the osmium centers ligated by the thiolate and hydrido ligands. 2a and 2b are stable in refluxing toluene and show no evidence for bridge-to-chelate isomerization of the ancillary bpcd ligand. DFT calculations on 2a and 2b indicate that the former cluster is the thermodynamically more stable isomer. Near-UV irradiation of 2b leads to CO loss and ortho metalation of the thiolate moiety, yielding the dihydride cluster H2Os3(CO)7(bpcd)(??,??-SC6H3Me-4) (3). The conversion of 2b to 3 and free CO is computed to be endothermic by 14.1?kcal/mol and the reaction is driven by the entropic release of CO. The photochemically promoted ortho-metalation reaction is isomer dependent since cluster 2a is inert under identical conditions.  相似文献   

3.
The reactions of OsO4 with excess of HSC6F5 and P(C6H4X-4)3 in ethanol afford the five-coordinate compounds [Os(SC6F5)4(P(C6H4X-4)3)] where X = OCH3 1a and 1b, CH3 2a and 2b, F 3a and 3b, Cl 4a and 4b or CF3 5a and 5b. Single crystal X-ray diffraction studies of 1 to 5 exhibit a common pattern with an osmium center in a trigonal-bipyramidal coordination arrangement. The axial positions are occupied by mutually trans thiolate and phosphane ligands, while the remaining three equatorial positions are occupied by three thiolate ligands. The three pentafluorophenyl rings of the equatorial ligands are directed upwards, away from the axial phosphane ligand in the arrangement “3-up” (isomers a). On the other hand, 31P{1H} and 19F NMR studies at room temperature reveal the presence of two isomers in solution: The “3-up” isomer (a) with the three C6F5-rings of the equatorial ligands directed towards the axial thiolate ligand, and the “2-up, 1-down” isomer (b) with two C6F5-rings of the equatorial ligands directed towards the axial thiolate and the C6F5-ring of the third equatorial ligand directed towards the axial phosphane. Bidimensional 19F–19F NMR studies encompass the two sub-spectra for the isomers a (“3-up”) and b (“2-up, 1-down”). Variable temperature 19F NMR experiments showed that these isomers are fluxional. Thus, the 19F NMR sub-spectra for the “2-up, 1-down” isomers (b) at room temperature indicate that the two S-C6F5 ligands in the 2-up equatorial positions have restricted rotation about their C–S bonds, but this rotation becomes free as the temperature increases. Room temperature 19F NMR spectra of 3 and 5 also indicate restricted rotation around the Os–P bonds in the “2-up, 1-down” isomers (b). In addition, as the temperature increases, the 19F NMR spectra tend to be consistent with an increased rate of the isomeric exchange. Variable temperature 31P{1H} NMR studies also confirm that, as the temperature is increased, the a and b isomeric exchange becomes fast on the NMR time scale.  相似文献   

4.
Treatment of either RuHCl(CO)(PPh3)3 or MPhCl(CO)(PPh3)2 with HSiMeCl2 produces the five-coordinate dichloro(methyl)silyl complexes, M(SiMeCl2)Cl(CO)(PPh3)2 (1a, M = Ru; 1b, M = Os). 1a and 1b react readily with hydroxide ions and with ethanol to give M(SiMe[OH]2)Cl(CO)(PPh3)2 (2a, M = Ru; 2b, M = Os) and M(SiMe[OEt]2)Cl(CO)(PPh3)2 (3a, M = Ru; 3b, M = Os), respectively. 3b adds CO to form the six-coordinate complex, Os(SiMe[OEt]2)Cl(CO)2(PPh3)2 (4b) and crystal structure determinations of 3b and 4b reveal very different Os-Si distances in the five-coordinate complex (2.3196(11) Å) and in the six-coordinate complex (2.4901(8) Å). Reaction between 1a and 1b and 8-aminoquinoline results in displacement of a triphenylphosphine ligand and formation of the six-coordinate chelate complexes M(SiMeCl2)Cl(CO)(PPh3)(κ2(N,N)-NC9H6NH2-8) (5a, M = Ru; 5b, M = Os), respectively. Crystal structure determination of 5a reveals that the amino function of the chelating 8-aminoquinoline ligand is located adjacent to the reactive Si-Cl bonds of the dichloro(methyl)silyl ligand but no reaction between these functions is observed. However, 5a and 5b react readily with ethanol to give ultimately M(SiMe[OEt]2)Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6a, M = Ru; 6b, M = Os). In the case of ruthenium only, the intermediate ethanolysis product Ru(SiMeCl[OEt])Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6c) was also isolated. The crystal structure of 6c was determined. Reaction between 1b and excess 2-aminopyridine results in condensation between the Si-Cl bonds and the N-H bonds with formation of a novel tridentate “NSiN” ligand in the complex Os(κ3(Si,N,N)-SiMe[NH(2-C5H4N)]2)Cl(CO)(PPh3) (7b). Crystal structure determination of 7b shows that the “NSiN” ligand coordinates to osmium with a “facial” arrangement and with chloride trans to the silyl ligand.  相似文献   

5.
The imidazolium salts 1,1′-dibenzyl-3,3′-propylenediimidazolium dichloride and 1,1′-bis(1-naphthalenemethyl)-3,3′-propylenediimidazolium dichloride have been synthesized and transformed into the corresponding bis(NHC) ligands 1,1′-dibenzyl-3,3′-propylenediimidazol-2-ylidene (L1) and 1,1′-bis(1-naphthalenemethyl)-3,3′-propylenediimidazol-2-ylidene (L2) that have been employed to stabilize the PdII complexes PdCl22-C,C-L1) (2a) and PdCl22-C,C-L2) (2b). Both latter complexes together with their known homologous counterparts PdCl22-C,C-L3) (1a) (L3 = 1,1′-dibenzyl-3,3′-ethylenediimidazol-2-ylidene) and PdCl22-C,C-L4) (1b) (L4 = 1,1′-bis(1-naphthalenemethyl)-3,3′-ethylenediimidazol-2-ylidene) have been straightforwardly converted into the corresponding palladium acetate compounds Pd(κ1-O-OAc)22-C,C-L3) (3a) (OAc = acetate), Pd(κ1-O-OAc)22-C,C-L4) (3b), Pd(κ1-O-OAc)22-C,C-L1) (4a), and Pd(κ1-O-OAc)22-C,C-L2) (4b). In addition, the phosphanyl-NHC-modified palladium acetate complex Pd(κ1-O-OAc)22-P,C-L5) (6) (L5 = 1-((2-diphenylphosphanyl)methylphenyl)-3-methyl-imidazol-2-ylidene) has been synthesized from corresponding palladium iodide complex PdI22-P,C-L5) (5). The reaction of the former complex with p-toluenesulfonic acid (p-TsOH) gave the corresponding bis-tosylate complex Pd(OTs)22-P,C-L5) (7). All new complexes have been characterized by multinuclear NMR spectroscopy and elemental analyses. In addition the solid-state structures of 1b·DMF, 2b·2DMF, 3a, 3b·DMF, 4a, 4b, and 6·CHCl3·2H2O have been determined by single crystal X-ray structure analyses. The palladium acetate complexes 3a/b, 4a/b, and 6 have been employed to catalyze the oxidative homocoupling reaction of terminal alkynes in acetonitrile chemoselectively yielding the corresponding 1,4-di-substituted 1,3-diyne in the presence of p-benzoquinone (BQ). The highest catalytic activity in the presence of BQ has been obtained with 6, while within the series of palladium-bis(NHC) complexes, 4b, featured with a n-propylene-bridge and the bulky N-1-naphthalenemethyl substituents, revealed as the most active compound. Hence, this latter precursor has been employed for analogous coupling reaction carried out in the presence of air pressure instead of BQ, yielding lower substrate conversion when compared to reaction performed in the presence of BQ. The important role of the ancillary ligand acetate in the course of the catalytic coupling reaction has been proved by variable-temperature NMR studies carried out with 6 and 7′ under catalytic reaction conditions.  相似文献   

6.
A series of pyrrolyl-imines HL1-6 was prepared by the condensation of pyrrole-2-carboxyaldehyde with different amines. The reaction of 2 equiv of pyrrolyl-imine with tetrabenzyl complexes of hafnium and zirconium M(CH2Ph)4 (M=Hf or Zr) gave dibenzyl complexes (L3-6)2M(CH2Ph)2, which were characterized by NMR spectroscopy and crystal structure analysis. NMR spectra of the complexes with secondary alkyl substituents at the imine nitrogen (isopropyl: 3a, 4-tert-butylcyclohexyl: 4a and 4b) suggest that rapid racemization between Δ and Λ configurations occurs in solution on the NMR time scale. The complexes with pyrrolide-imine ligands with a tertiary alkyl group such as tert-butyl (5a and 5b) or 1-adamantyl (6a and 6b) at the imine nitrogen possess cis-configured benzyl groups. Hafnium complexes 5a and 6a react with B(C6F5)3 in bromobenzene-d5 to give the corresponding cationic benzyl complexes, which exhibit high activity for ethylene polymerization (5a: 2242 kg-polymer/ mol-Hf h bar, 6a: 2096 kg-polymer/ mol-Hf h bar). Zirconium complexes 5b and 6b display a remarkably high ethylene polymerization activity when activated with methylaluminoxane (5b: 17,952 kg-polymer/mol-Zr h bar, 6b: 22,944 kg-polymer/mol-Zr h bar).  相似文献   

7.
Nitrile-functionalized NCN-pincer complexes of type [MBr(NC-4-C6H2(CH2NMe2)2-2,6)] (6a, M = Pd; 6b, M = Pt) (NCN = [C6H2(CH2NMe2)2-2,6]) are accessible by the reaction of Br-1-NC-4-C6H2(CH2NMe2)2-2,6 (2b) with [Pd2(dba)3 · CHCl3] (5a) (dba = dibenzylidene acetone) and [Pt(tol-4)2(SEt2)]2 (5b) (tol = tolyl), respectively. Complex 6b could successfully be converted to the linear coordination polymer {[Pt(NC-4-C6H2(CH2NMe2)2-2,6)](ClO4)}n (8) upon its reaction with the organometallic heterobimetallic π-tweezer compound {[Ti](μ-σ,π-CCSiMe3)2}AgOClO3 (7) ([Ti] = (η5-C5H4SiMe3)2Ti).The structures of 6a (M = Pd) and 6b (M = Pt) in the solid state are reported. In both complexes the d8-configurated transition metal ions palladium(II) and platinum(II) possess a somewhat distorted square-planar coordination sphere. Coordination number 4 at the group-10 metal atoms M is reached by the coordination of two ortho-substituents Me2NCH2, the NCN ipso-carbon atom and the bromide ligand. The NC group is para-positioned with respect to M.  相似文献   

8.
The diiron ynamine complex [Fe2(CO)7{μ-CR)C(NEt2)}] (1:R=Me,2:R = C3H5.3:R=SiMe3.4:R = Ph) reacts at room temperature with diphenyldiazomethane Ph2CN2, in hexane to yield complexes [Fe2(CO)6{C(R)C(NEt2)N (NCPh2)] (5a:R=Me,6a:R=C3H5.7a R=SiMe3.8a:R=Ph) resulting from the insertion of the terminal nitrogen atom into the Fe=C carbene bond. Insertion the second nitrogen atom and formation of compounds [Fe2(CO)6zμ-C(R)C(NEt2)NN(CPh2)}] (5b:R=Me,6b:R=C3H5,7b:R=SiMe3,8b:R=Ph) is observed when compounds5a-5a are treated in refluxing hexane. Transformation of compoundsa tob is also obtained at room temperature within a few days. All compounds were identified by their1H NMR spectra. Compounds6a, 7a, 8a, and8b were characterized by single crystal X-ray diffraction analyses. Crystal data: for6a: space group = P21/n,a=12.853(1) A,b=24.800(7) A,c=8.947(6) A,β=99.29(3)°,Z=4, 2227 rellectionsR=0,038; for7a: space group=Pl,a=ll.483(4) A,b=14.975(4) A,c = 17.890(8) A,α = 82.80(3)°,β=94.29(7)°,γ=85.42(2),Z = 4, 5888 reflectionR = 0.035: for8a: space group = Pcab.a = 31.023(8) A.b=20.137(1) A.c=9.686(2) A.Z=8. 1651 reflections,R=0.071; for8b: space group=P21/n,a=21.459(4),b=10,100(3) A,c=28,439(8) A,ß=103.86(4)°,Z=8. 2431 reflections.R=0.057.  相似文献   

9.
The direct irradiation of the β,γ.β',γ'-dienones 1–5 and the β,γ.γ',δ'-dienones (E)-6a, (E)-7a and 8a at λ 300 nm has been studied. The β,γ.β,γ'-dienones 1–5 are remarkable photostable for λ ? 300 nm, even upon prolonged irradiation, in contrast to simple β,γ-enones which upon irradiation exhibit α-cleavage, γ-hydrogen abstraction, (E)-(Z) isomerization and oxetane formation. The observed photostability of the β,γ.β',γ'-dienones is rationalized in terms of a rapid radiationless decay of the excited singlet state, enhanced by CT-interaction between the carbonyl 1(n-π*) state and the homoconjugated 1,4-diene moiety, which precludes fluorescence, photochemical reactions and intersystem crossing (ISC).The β,γ.γ',δ'-dienones (E)-(6a), (E)-7a and 8a exhibit only a 1,3-acyl shift (1,3-AS) without (E)-(Z) isomerization of the alkenyl moiety, to yield (E)-6b, (E)-7b and 8b. It is concluded that the 1,3-AS proceeds from the 1(n-π*) state with a rate which is very large relative to the rate of ISC to the 3(n-π*) state, thus precluding any internal triplet energy transfer (1TET) from the 3(n-π*) to the 3(π-π*) state which would manifest itself by (E)-(Z) isomerization.  相似文献   

10.
The reaction of RHN(CH2)3NHR (1a,b) (a, R=2,6-iPr2C6H3; b, R=2,6-Me2C6H3) with 2 equiv of BuLi followed by 2 equiv of ClSiMe3 yields the silylated diamines R(Me3Si)N(CH2)3N(SiMe3)R (3a,b). The reaction of 3a,b with TiCl4 yields the dichloride complexes [RN(CH2)3NR]TiCl2 (4a,b) and two equiv of ClSiMe3. An X-ray study of 4a (P21/n, a=9.771(1) Å, b=14.189(1) Å, c=21.081(2) Å, β=96.27(1)°, V=2905.2(5) Å3, Z=4, T=25°C, R=0.0701, Rw=0.1495) revealed a distorted tetrahedral geometry about titanium with the aryl groups lying perpendicular to the TiN2-plane. Compounds 4a,b react with 2 equiv of MeMgBr to give the dimethyl derivatives [RN(CH2)3NR]TiMe2 (5a,b). An X-ray study of 5b (P212121, a=8.0955(10) Å, b=15.288(4) Å, c=16.909(3) Å, V=2092.8(7) Å3, Z=4, T=23°C, R=0.0759, Rw=0.1458) again revealed a distorted tetrahedral geometry about titanium with titanium–methyl bond lengths of 2.100(9) Å and 2.077(9) Å. These titanium dimethyl complexes are active catalysts for the polymerization of 1-hexene, when activated with methylaluminoxane (MAO). Activities up to 350,000 g of poly(1-hexene)/mmol catalyst·h were obtained in neat 1-hexene. These systems actively engage in chain transfer to aluminum. Equimolar amounts of 5a or 5b and B(C6F5)3 catalyze the living aspecific polymerization 1-hexene. Polydispersities (Mw/Mn) as low as 1.05 were measured. Highly active living systems are obtained when 5a is activated with {Ph3C}+[B(C6F5)4]. A primary insertion mode (1,2 insertion) has been assigned based on both the initiation of the polymer chain and its purposeful termination with iodine.  相似文献   

11.
《Polyhedron》1999,18(20):2583-2595
The reaction of the novel ferrocenyl Schiff base: [(η5-C5H5)Fe{(η5-C5H4)-CH=N-(C6H4-2-C6H5)}] (1) with Na2[PdCl4] and Na(CH3COO)·3H2O in a 1:1:1 molar ratio in methanol is reported. In this reaction two different di-μ-chloro-bridged cyclopalladated complexes: [Pd{[(η5-C5H3)-CH=N-(C6H4-2-C6H5)]Fe(η5-C5H5)}(μ-Cl)]2 (2a) and [Pd{[(C6H4-2-C6H4)-N=CH-(η5-C5H4)]Fe(η5-C5H5)}(μ-Cl)]2 (2b) can be formed depending on the experimental conditions. Compounds 2a and 2b, which differ in the nature of the metallated carbon atom (Csp2,ferrocene or Csp2,biphenyl, respectively), undergo cleavage of the ‘Pd(μ-Cl)2Pd’ bridges in the presence of thallium (I) acetylacetonate, deuterated pyridine or triphenylphosphine giving the monomeric derivatives: [Pd(CN)(acac)] (3a, 3b) and [Pd(CN)Cl(L)] {with L=py- d5(4a, 4b), PPh3(5a, 5b)}. The reactions of 2 with 1,2-bis(diphenylphosphino)ethane (dppe) reveal that the two isomers (2a and 2b) exhibit different reactivity versus dppe. These results have been interpreted on the basis of steric effects.  相似文献   

12.
A series of tetrathiafulvalene-substituted 2,3-di(2-pyridyl)quinoxaline (dpq) ligands, 2-(4,5-bis(methylthio)-1,3-dithiol-2-ylidene)-6,7-di(pyridin-2-yl)- [1,3]dithiolo[4,5-g]quinoxaline (L1), dimethyl-2-(6,7-di(pyridin-2-yl)-[1,3]dithiolo[4,5-g]quinoxalin-2-ylidene)-1,3-dithiole-4,5-dicarboxylate (L2), and 2-(5,6-dihydro-[1,3]dithiolo[4,5-b] [1,4]dithiin-2-ylidene)-6,7-di(pyridin-2-yl)-[1,3]dithiolo[4,5-g]quinoxaline (L3), have been prepared. Reactions of these ligands with Re(CO)5Cl afford the corresponding dinuclear rhenium(I) carbonyl complexes, Re2(L)(CO)6Cl2 (L = L1, 5a; L = L2, 5b; L = L3, 5c). All new compounds are fully characterized by 1H NMR, IR and mass spectroscopies. The crystal structures of 5a and 5b have been studied. Optimized conformations and molecular orbital diagrams of 5a5c have been calculated with density functional theory (DFT). The spin-allowed singlet−singlet electronic transitions of all complexes have been calculated with time-dependent DFT (TDDFT), and the UV-Vis−NIR spectra are discussed based on the theoretical calculations.  相似文献   

13.
Metallation of PCl3 with Na[M(CO)3C5Me5] (M  Mo, W) (1a, 1b) yields the metallodichlorophosphanes C5Me5(CO)3MPCl2 (2a, 2b), which show a remarkable thermal stability due to metal—phosphorus bond strengthening by the electron-donating C5Me5 group. Treatment of 2a with Me3P leads to the formation of C5Me5(CO)2(Me3P)MoCl (4) via CO/Me3P-exchange at 2a and subsequent elemination of “PCl”. The high Lewis basicity of 2a, 2b, which has to be referred to the high electron donor capacity of the transition metal unit is proved by the spontaneous reaction with elemental sulfur or BH3 · THF to give the mtallodichlorophosphine sulfide C5Me5(CO)3MPCl2(S) (5a, 5b) or the borane adducts C5Me5(CO)3MPCl2BH3 (6a, 6b), respectively. The new metal-phosphorus compounds are characterized by IR and NMR spectroscopy.  相似文献   

14.
The syntheses and characterization of two novel ferrocene derivatives containing 3,5-diphenylpyrazole units of general formula [1-R-3,5-Ph2-(C3N2)-CH2-Fc] {Fc = (η5-C5H5)Fe(η5-C5H4) and R = H (2) or Me (3)} together with a study of their reactivity with palladium(II) and platinum(II) salts or complexes under different experimental conditions is described. These studies have allowed us to isolate and characterize trans-[Pd{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}2Cl2] (4a) and three different types of heterodimetallic complexes: cis-[M{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] {M = Pd (5a) or Pt (5b)}, the cyclometallated products [M{κ2-C,N-[3-(C6H4)-1-Me-5-Ph-(C3N2)]-CH2-Fc}Cl(L)] with L = PPh3 and M = Pd (6a) or Pt (6b) or L = dmso and M = Pt (8b) and the trans-isomer of [Pt{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] (7b). In compounds 4a, 5a, 5b and 7b, the ligand behaves as a neutral N-donor group; while in 6a, 6b and 8b it acts as a bidentate [C(sp2,phenyl),N(pyrazole)] group. A comparative study of the spectroscopic properties of the compounds, based on NMR, IR and UV-Visible experiments, is also reported.  相似文献   

15.
Addition of BH3·thf to 1-alkylimidazoles (alkyl=methyl, butyl) and 1-methylbenzimidazole leads to BH3 adducts, which are deprotonated by BuLi to yield the organolithium compounds (L)Li+(1bd). In the solid state (thf)Li+1b is dimeric. The acyl–iron complexes (thf)3Li+(3b,d) are formed from (thf)Li+(1b,d) and Fe(CO)5. (L)Li+(1ac) react with [CpFe(CO)2X], however, the only complex obtained is [CpFe(CO)21a] (5a). The analogous reaction of (L)Li+1a with the pentadienyl complex [(C7H11)Fe(CO)2Br] yields the corresponding iron compound 6a. Their compositions follow from spectroscopic data. Treatment of Cp2TiCl with (L)Li+1a leads to [Cp2Ti1a] (7a), which could not be oxidized with PbCl2 to give the corresponding Ti(IV) complex. The compounds [Li(py)4]+9a and [Li(L)4]+(10bd) are obtained when (L)Li+1 are reacted with VCl3 and ScCl3. The X-ray structure analysis of the vanadium complex reveals a distorted tetrahedron of the anion [V(1a)4] with two smaller and four larger CVC angles. The scandium compound [Li(dme)2+10c] has a different structure: the distorted tetrahedron of the anion [Sc(1c)4] contains two larger (140.2 and 142.9°) and four smaller CScC angles (93.9–98.7°). This arrangement allows the formation of four bridging BHSc 3c,2e bonds to give an eight-fold coordination. The anion 10c is formally a 16e complex.  相似文献   

16.
《Polyhedron》2001,20(15-16):2011-2018
The reaction behavior of the 48e-clusters [Ru3(CO)8(μ-H)2(μ-PR2)2] (R=But, 1a; R=Cy, 1b) towards phosphine ligands has been studied. Whereas 1a reacts spontaneously with many phosphines at room temperature, a lack of reactivity for 1b under similar conditions is observed. Thus 1a reacts with dppm (Ph2PCH2PPh2) to the known 46e-cluster [Ru3(μ-CO)(CO)43-H)(μ-H)(μ-PBut2)2(μ-dppm)] (2a), and the reaction of 1a with dppe (Ph2PC2H4PPh2) yields analogously [Ru3(μ-CO)(CO)43-H)(μ-H)(μ-PBut2)2(μ-dppe)] (3). Reactions of 1a with dmpm (Me2PCH2PMe2), dmpe (Me2PC2H4PMe2) and PBun3, respectively, gave in each case a mixture of products which could not be characterized. Contrary to the reaction behavior at room temperature, 1b reacts with phosphines in THF under reflux yielding the novel complexes [Ru3(CO)6(μ-H)2(μ-PCy2)2L2] (L=Cy2PH, 4a; L=But2PH, 4b; L=Ph2PH, 4c; L=P(OEt)3, 4d). 4a is also obtained directly by the reaction of [Ru3(CO)12] with an excess of Cy2PH. The molecular structure of 4a has been determined by a single-crystal X-ray analysis. Moreover, the thermolysis of 1a in octane affords [Ru3(CO)8(μ-H)23-PBut)(But2PH)] (6) as the main product, and the thermolysis of [Ru3(CO)9(But2PH)(μ-dppm)] (7) yields 2a to a considerable extent. Treatment of 1a with carbon tetrachloride leads to [Ru3(CO)7(μ-H)(μ-PBut2)2(μ-Cl)] (8) as the main product.  相似文献   

17.
Several chiral Co3+ complexes with Schiff bases of amino acids glycine (1), valine (3), threonine (6), and salicylaldehyde or 3-methylsalicylaldehyde of the same amino acids (2, 4 and 5) have been synthesized.Diastereomers (a and b) of compounds 36 were separated on Al2O3 and enantiomers (a and b) of compounds 1 and 2 were resolved with brucine and strychnine. The structures of the obtained compounds were determined by elemental analysis, UV, PMR and ORD spectra.The Δ-absolute configuration of 5a was established by X-ray structural analysis. On this basis the Δ-absolute configuration was assigned to all a isomers and the Δ-absolute configuration to all b isomers.Kinetics and stereochemistry of α-proton exchange of the amino acid fragment in 14 was studied. Exchange of both protons of the glycine fragment in 1 proceeds with approximately the same rate, while the exchange of the α-protons in 2 proceed with different rates. The kRex /kSex ratio was experimentally established to be approximately 10.  相似文献   

18.
Thermolysis of [Ru3(CO)12] in cyclohexene for 24 h affords the complexes [Ru(CO)34-C6H8)] (1), [Ru3H2(CO)92121-C6H8)] (2), [Ru4(CO)124-C6H8)] (3) [Ru4(CO)94-C6H8)(η6-C6H6)] (4a and 4b, two isomers) and [Ru5(CO)1242-C6H8)(η4-C6H8)] (5), where 1, 3, 4a and 4b have been previously characterised as products of the thermolysis of [Ru3(CO)12] with cyclohexa-1,3-diene. The molecular structures of the new clusters 2 and 5 were determined by single-crystal X-ray crystallography, showing that two conformational polymorphs of 5 exist in the solid state, differing in the orientation of the cyclohexa-1,3-diene ligand on a ruthenium vertex.  相似文献   

19.
Preparations of 2-(4-fluorobenzyl)-6-phenylimidazo[2,1-b][1,3,4]thiadiazole (3a) and its chlorophenyl derivative (3b) are described. Preliminary analysis was done spectroscopically by means of 1H NMR, 13C NMR spectra, mass spectra and elemental analyses. Further the structures were confirmed by X-ray crystal structure analyses. The compound (3a) has crystallized in a triclinic P-1 space group with three independent molecules in the asymmetric unit, while the compound (3b) belongs to P21/c space group with one molecule in the asymmetric unit. The molecule (3b) differs from molecule (3a) by the presence of chlorine substituent. Additionally, the imidazo-thiadiazole entity is as usual planar. Intramolecular C–H⋯N hydrogen bonding between the imidazole and the phenyl ring of the molecule can be observed in (3a) & (3b). The molecules of (3a) are linked into two dimensional supramolecular hexagonal hydrogen bonded network sustained by C–H⋯F interaction, while those of (3b) are linked by bifurcated C–H⋯N interactions. Further, the molecular packing of both the compounds is stabilized by ππ stacking interactions between the benzene and imidazo-thiadiazole ring systems.  相似文献   

20.
(5Z,5′Z)-3,3′-(1,4-Phenylenebis(methylene)-bis-(5-arylidene-2-thioxothiazolidin-4-one) derivatives (5a-r) have been synthesized by the condensation reaction of 3,3′-(1,4- or 1,3-phenylenebis(methylene))bis(2-thioxothiazolidin-4-ones) (3a,b) with suitably substituted aldehydes (4a-f) or 2-(1H-indol-3-yl)2-oxoacetaldehydes (8a-c) under microwave conditions. The bis(2-thioxothiazolidin-4-ones) were prepared from the corresponding primary alkyl amines (1a,b) and di-(carboxymethyl)-trithiocarbonyl (2). The 2-(1H-indol-3-yl)-2-oxoacetaldehydes (8a-c) were synthesized from the corresponding acid chlorides (7a-c) using HSnBu3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号