首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capitalizing on Emerging Technologies: A Case Study of Classroom Blogging   总被引:1,自引:0,他引:1  
The challenge many teachers face is how to incorporate new technology into their classrooms that strengthens classroom learning by capitalizing on students’ media literacies. Blogs, a new and innovative technological tool, can be used in math and science classrooms to support student learning by capitalizing on students’ interests and familiarity with on‐line communication. This study explores the emerging blogging practices of one high school mathematics teacher and his class to explore issues of intent, use, and perceived value. Data sources for this case included one year's worth of blog content, an interview with the facilitating teacher, and students ‘perceptions of classroom blogging practices. Findings indicate that (1) teachers’ intentions focused on creating additional forms of participation as well as increasing student exposure time with content; (2) blogs were used in a wide variety of ways that likely afforded particular benefits; and (3) both teacher and students perceived the greater investment to be worthwhile. The findings are used to critically consider claims made in the literature about the potential of blogging to effectively support classroom learning.  相似文献   

2.
Substantial recent focus has been placed upon the competitiveness of American students in increasingly global economies and entrepreneurial enterprises. As concerns center on students’ educational preparedness and their efforts at continued learning, researchers acknowledge the importance of student engagement with school. In order to foster engaged learners, teachers must be able to determine and monitor their students’ levels of engagement. The current study examined the alignment of perceptions of engagement by students, teachers, and outside observers across middle and high school mathematics and science classrooms. Results indicated significant teacher‐student differences in perceptions of student cognitive engagement across mathematics and science classrooms with teachers consistently perceiving higher levels than students. Moreover, most effect sizes were moderate to large. A subsequent multi‐level analysis indicated that while teacher perceptions of student cognitive engagement were somewhat predictive of student reported cognitive engagement, academic engagement ratings by outside observers were not.  相似文献   

3.
This study evaluated the effectiveness of teacher‐scientist partnerships for increasing the use. of inquiry in precollege classrooms. It assessed the influence of the Teaching About Energy Through Inquiry Institutes for middle and high school teachers and energy scientists on participants' attitudes about science and science education, use of inquiry instructional techniques, and student attitudes about their classroom environments. Participant surveys, institute and classroom observations, lesson plans, and interviews indicated increased appreciation for inquiry, greater confidence in teaching using inquiry, and greater use of inquiry in the classroom. Student surveys and classroom observations pointed to higher levels of student satisfaction and less friction among classmates during inquiry‐based investigations implemented after the institutes. Moreover, scientist partners reported increased familiarity with principles of science education and best teaching practice, which are essential skills and knowledge for disseminating results of scientific research to nonscientific audiences, as well as their own students. These results suggest that collaborations between teachers and research scientists can positively affect the environment for learning science in precollege and college classes. Successful collaborations are most likely to occur when equal status for teachers and scientists in the partnership is stressed and partners have the opportunity to explore inquiry‐based curricula together.  相似文献   

4.
This paper examines professional development workshops focused on Connected Math, a particular curriculum utilized or being considered by the middle‐school mathematics teachers involved in the study. The hope was that as teachers better understood the curriculum used in their classrooms, i.e., Connected Math, they would simultaneously deepen their own understanding of the corresponding mathematics content. By focusing on the curriculum materials and the student thought process, teachers would be better able to recognize and examine common student misunderstandings of mathematical content and develop pedagogically sound practices, thus improving their own pedagogical content knowledge. Pre‐ and post‐mathematics content knowledge assessments indicated that engaging middle‐school teachers in the curriculum materials using pedagogy that can be used with their middle‐school students not only solidified teachers' familiarity with such strategies, but also contributed to their understanding of the mathematics content.  相似文献   

5.
The purpose of this study was to assess the impact a community‐based service learning program might have on preservice teachers' science instruction during student teaching. Designed to promote science inquiry, preservice teachers learned how to offer students more opportunities to develop their own ways of thinking through utilization of an afterschool science program that provided them extended opportunities to practice their science teaching skills. Three preservice teachers were followed to examine and evaluate the transfer of this experience to their student teaching classroom. Investigation methods included field observations and semi‐structured, individual interviews. Findings indicate that preservice teachers expanded their ideas of science inquiry instruction to include multiple modes of formative assessment, while also struggling with the desire to give students the correct answer. While the participants' experiences are few in number, the potential of afterschool teaching experience serving as an effective learning experience in preservice teacher preparation is significant. With the constraints of high‐stakes testing, community‐based service learning teaching opportunities for elementary and middle‐school preservice teachers can support both the development and refinement of inquiry instruction skills.  相似文献   

6.
This study represents a first iteration in the design process of the Growing Awareness Inventory (GAIn), a structured observation protocol for building the awareness of preservice teachers (PSTs) for resources in mathematics and science classrooms that can be used for culturally responsive pedagogy (CRP). The GAIn is designed to develop awareness of: how students use language in classrooms; relationships between teacher questioning patterns and student participation; messages conveyed by the classroom environment; and ways to incorporate students’ interests into lesson plans. The methodology took the form of a multiple case study design with fourteen mathematics PSTs as one case and five science PSTs as the other case. The participants' response to the GAIn and lesson plans served as data sources. Findings reveal that the GAIn scaffolded PSTs’ awareness of their students, their own attitudes, and several elements of CRP. However, there were key areas of CRP that were neither explored with the GAIn nor identified by the participants. Consistent with design‐based research, outcomes include a design framework for revision of the GAIn and a theory of action that situates it within a teacher education course that includes a field placement.  相似文献   

7.
The GTECH project, funded through a grant from the GTE Foundation, prepared school teams of science, mathematics and technology teachers and an administrator to set goals for their local schools regarding implementation of electronic technology and integration of content across curricular areas. A variety of teacher‐centered staff development strategies were used to enable participants to achieve local school objectives, model and encourage active learning environments involving technology, develop integrated curriculum and provide training to their peers. GTECH staff provided workshops and summer institutes based on teacher feedback and classroom observations. Data from the Stages of Concerns Questionnaire assisted the staff in designing effective staff development activities. Over the 2‐year period, teacher teams developed and implemented integrated instructional materials and developed skills in using HyperStudio, PowerPoint, telecommunications applications, and instructional resources from the Internet. They also linked instruction to new state and national standards in science, mathematics, and technology. GTECH teachers reported that their students have expanded their knowledge and skill in problem solving, teamwork, technical expertise, and creativity.  相似文献   

8.
Two sections of middle school science were taught by two longtime teachers where one used an STS approach and the other followed the more typical textbook approach closely. Pre‐ and post assessments were administered to one section of students for each teacher. The testing focused on student concept mastery, general science achievement, concept applications, use of concepts in new situations, and attitudes toward science. Videotapes of classroom actions were recorded and analyzed to determine the level of the use of STS teaching strategies in the two sections. Information was also be collected that gave evidence of and noted changes in student creativity and the continuation of student learning and the use of it beyond the classroom. Major findings indicate that students experiencing the STS format where constructivist teaching practices were used to (a) learn basic concepts as well as students who studied them directly from the textbook, (b) achieve as much in terms of general concept mastery as students who studied almost exclusively by using a textbook closely, (c) apply science concepts in new situations better than students who studied science in a more traditional way, (d) develop more positive attitudes about science, (e) exhibit creativity skills more often and more uniquely, and (f) learn and use science at home and in the community more than did students in the textbook dominated classroom.  相似文献   

9.
The purposes of this study were to observe the teaching practices occurring in student teachers' science and mathematics K‐12 classrooms, compare the student teachers' perceptions of their teaching with what was actually occurring in their classrooms, and determine which college faculty members and courses these student teachers felt contributed to the teaching methods they used. Data on each student teacher were gathered via field notes of three classes, an observation protocol completed after each lesson, and an interview. Composites were written for each of the students. The total data set of all composites was examined to see if any patterns generalizable to the whole were evident. Differences between and among grade levels and content areas surfaced and are discussed.  相似文献   

10.
Research indicates that teacher efficacy influences student achievement and is situation specific. With the Next Generation Science Standards calling for the incorporation of engineering practices into K–12 classrooms, it is important to identify teachers’ engineering teaching efficacy. A study of K–5 teachers’ engineering self‐efficacy and engineering teaching efficacy revealed that that they have low engineering self‐efficacy and low teacher efficacy related to engineering pedagogical content knowledge. Additionally, significant differences existed in self‐efficacy levels based on gender, ethnicity, Title I school status, and grade level taught.  相似文献   

11.
The purpose of this phenomenological study was to explore how science teachers who persisted in urban schools interpreted and responded to the unique features of urban educational contexts. With 17 alumni who taught in metropolitan areas across seven states, the Science Educators for Urban Schools (SEUS) program provided a research setting that offered a unique view of science teachers’ development of knowledge of urban education contexts. Data sources included narratives of teaching experiences from interviews and open‐ended survey items. Findings were interpreted in light of context knowledge for urban educational settings. Findings indicated that science teaching in urban contexts was impacted by the education policy context, notably through accountability policies that narrowed and marginalized science instruction; community context, evident in teacher efforts to make science more relevant to students; and school contexts, notability their ability to creatively adjust for resource deficiencies and continue their own professional growth. Participants utilized this context knowledge to transform student opportunities to learn science. The study suggests that future science education research and teacher preparation efforts would benefit from further attention to the unique elements of urban contexts, specifically the out of classroom contexts that shape science teaching and learning.  相似文献   

12.
The purpose of the study was to examine the effectiveness of the Iowa Chautauqua Professional Development Program in terms of changes in concept mastery, use of process skills, application of science concept and skills, student attitudes toward science, student creativity, and student perceptions regarding their science classrooms. Participants were 12 teachers who agreed to participate in an experimental study where an inquiry approach was utilized with one section and traditional strategies in another section. A total of 24 sections of students were enrolled in inquiry sections (365 students) and traditional sections (359 students). The data collected were analyzed using quantitative methods. The results are tabulated and contrasted for students enrolled in the two sections for each teacher. The results indicate that student use and understanding of science skills and concepts in the inquiry sections increased significantly more than they did for students enrolled in typical sections in terms of process skills, creativity skills, ability to apply science concepts, and the development of more positive attitudes.  相似文献   

13.
This longitudinal, five‐year study of teachers and students who had participated in a systemic reform program in science explored if (1) teacher change in practice realized during a three‐year program is sustained one, two, and three years following the program, (2) student performance on state science assessments two years following studying with teachers at this school still demonstrated significant differences from students who attended the control school, and (3) student performance continued to be enhanced for both White and Minority students. Student achievement was assessed using the Discovery Inquiry Test in Science during sixth through eighth grades and the Ohio Graduation Test was used in 10th grade. The same students completed the test in grades 6–8 and 10th grade. Students from the Program school significantly outperformed students who attended the control school on the 10th grade state assessment in science. Findings in this study revealed the ability for sustained, whole‐school, professional development programs to have a cumulative and residual impact on teacher change and student learning of science.  相似文献   

14.
15.
Preparing future science teachers for U.S. city classrooms is an important yet poorly understood process. The purpose of this study was to determine the philosophies and practices of university ‐based science educators associated with programs supplying teachers for metropolitan school systems. Through an iterative process of mailed questionnaires, 20 participants rated their views on issues pertinent to science teacher education. The responses to questionnaires were used in the creation of items for each subsequent round. The three rounds of questionnaires contained Likert ‐scale and open‐ended questions. For many issues, there was consistently high consensus among the expert panelists, including the presence of students for whom English is a second or new language, the importance of science education professors remaining connected to urban school issues, and practices often affiliated with reform (e.g., alternative assessment, nature of science). Several issues emerged as having low regard by the participants, including the role of student ethnicity on teaching strategies, providing instruction about reading strategies within science teacher preparation, and the value of professors having themselves taught science in urban settings.  相似文献   

16.
Berinderjeet Kaur 《ZDM》2008,40(6):951-962
The learner’s perspective study, motivated by a strong belief that the characterization of the practices of mathematics classrooms must attend to learner practice with at least the same priority as that accorded to teacher practice, is a comprehensive study that adopts a complementary accounts methodology to negotiate meanings in classrooms. In Singapore, three mathematics teachers recognized for their locally defined ‘teaching competence’ participated in the study. The comprehensive sets of data from the three classrooms have been used to explore several premises related to the teaching and learning of mathematics. In this paper the student interview data and the teacher interview data were examined to ascertain what do students attach importance to and what do teachers attach importance to in a mathematics lesson? The findings of the student interview data showed that they attached importance to several sub-aspects of the three main aspects, i.e., exposition, seatwork and review and feedback of their teachers’ pedagogical practices. The findings of the teacher interview data showed that they attached importance to student’s self assessment, teacher’s demonstration of procedures, review of prior knowledge and close monitoring of their student’s progress in learning and detailed feedback of their work. It was also found that teachers and students did attach importance to some common lesson events.  相似文献   

17.
This study investigated safety in Texas secondary school science laboratory, classroom, and field settings. The Texas Education Agency (TEA) drew a random representative sample consisting of 199 secondary public schools in Texas. Eighty‐one teachers completed Incident/Accident Reports. The reports were optional, anonymous, and open‐ended; thus, they are unique in capturing the strengths and weaknesses of safety practices in school science settings as perceived by the teachers. Pertinent findings include: a) incidents and accidents (mishaps) increased from 8% to 62% as the class enrollment increased from <14 students to >24 students (p < 0.05), b) mishaps increased from 11% to 66% as classroom space per student decreased from >60 ft2 per student to <45 ft2 per student (p < 0.05), c) mishaps increased from 11% to 47% as room size decreased from >1200 ft2 to <800 ft2 (p < 0.05) d) 35% of teachers did not have adequate safety training within the last year, and e) 69% of teachers had a written safety policy. The findings of this study can be used to develop science classroom, lab, and field safety guidelines on a classroom, school, district, state, and a national level.  相似文献   

18.
David Clarke  Li Hua Xu 《ZDM》2008,40(6):963-972
The research reported in this paper examined spoken mathematics in particular well-taught classrooms in Australia, China (both Shanghai and Hong Kong), Japan, Korea and the USA from the perspective of the distribution of responsibility for knowledge generation in order to identify similarities and differences in classroom practice and the implicit pedagogical principles that underlie those practices. The methodology of the Learner’s Perspective Study documented the voicing of mathematical ideas in public discussion and in teacher–student conversations and the relative priority accorded by different teachers to student oral contributions to classroom activity. Significant differences were identified among the classrooms studied, challenging simplistic characterisations of ‘the Asian classroom’ as enacting a single pedagogy, and suggesting that, irrespective of cultural similarities, local pedagogies reflect very different assumptions about learning and instruction. We have employed spoken mathematical terms as a form of surrogate variable, possibly indicative of the location of the agency for knowledge generation in the various classrooms studied (but also of interest in itself). The analysis distinguished one classroom from another on the basis of “public oral interactivity” (the number of utterances in whole class and teacher–student interactions in each lesson) and “mathematical orality” (the frequency of occurrence of key mathematical terms in each lesson). Classrooms characterized by high public oral interactivity were not necessarily sites of high mathematical orality. In particular, the results suggest that one characteristic that might be identified with a national norm of practice could be the level of mathematical orality: relatively high mathematical orality characterising the mathematics classes in Shanghai with some consistency, while lessons studied in Seoul and Hong Kong consistently involved much less frequent spoken mathematical terms. The relative contributions of teacher and students to this spoken mathematics provided an indication of how the responsibility for knowledge generation was shared between teacher and student in those classrooms. Specific analysis of the patterns of interaction by which key mathematical terms were introduced or solicited revealed significant differences. It is suggested that the empirical investigation of mathematical orality and its likely connection to the distribution of the responsibility for knowledge generation and to student learning ourcomes are central to the development of any theory of mathematics instruction and learning.  相似文献   

19.
Promoting discussion and argumentation of mathematical ideas among students are aspects of the vision for communication in recent school mathematics reform efforts. Having rich mathematical discussions, however, can present a variety of classroom challenges. Many factors influence classroom discussions and need to be addressed in ways that will assist teachers in creating more inquiry-based mathematics classrooms. The study presented here examined the development of mathematical discussions in a fifth-grade classroom over the course of a school year. Various aspects of the participants' interactions, teacher's pedagogy, and the classroom microculture were investigated. One major result is the evolution of student participation from nonactive listening to active listening and use of others' ideas to develop new conjectures. These changes were paralleled by changes in the teacher's role in the classroom and the nature of her questions, in particular.  相似文献   

20.
Promoting discussion and argumentation of mathematical ideas among students are aspects of the vision for communication in recent school mathematics reform efforts. Having rich mathematical discussions, however, can present a variety of classroom challenges. Many factors influence classroom discussions and need to be addressed in ways that will assist teachers in creating more inquiry-based mathematics classrooms. The study presented here examined the development of mathematical discussions in a fifth-grade classroom over the course of a school year. Various aspects of the participants' interactions, teacher's pedagogy, and the classroom microculture were investigated. One major result is the evolution of student participation from nonactive listening to active listening and use of others' ideas to develop new conjectures. These changes were paralleled by changes in the teacher's role in the classroom and the nature of her questions, in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号