首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The phase equilibria in the FeFe2O3Y2O3 system have been established at 1200°C. The following phases were stable: yttria, hematite, magnetite, wüstite, metallic iron, yttrium-iron perovskite, yttrium-iron garnet, and a new phase YFe2O4, belonging to a rhombohedral crystal system. The YFe2O4 compound has a solid solution from YFe2O3.905 to YFe2O4.000. The standard free energies of formation of YFe2O3.905, YFeO3, and Y3Fe5O12 have been determined to be ?96 800 ± 200 cal, ?59 800 ± 200 cal, and ?143 700 ± 600 cal, respectively, from metallic iron, Y2O3, and oxygen.  相似文献   

2.
The activity of NiAl2O4 in NiAl2O4MgAl2O4 solid solutions has been measured by using a solid oxide galvanic cell of the type, Pt, Ni + NiAl2O4 + Al2O3(α)/CaOZrO2/Ni + NixMg1?xAl2O4 + Al2O3(α). Pt, in the temperature range 750–1150°C. The activities in the spinel solid solutions show negative deviations from Raoult's law. The cation distribution in the solid solutions has been calculated using site preference energies independent of composition for Ni2+, Mg2+, and Al3+ ions obtained from crystal field theory and measured cation disorder in pure NiAl2O4 and MgAl2O4, and assumi g ideal mixing of cations on the tetrahedral and octahedral positions. The calculated values correctly predict the decrease in the fraction, α, of Ni2+ ions on tetrahedral sites for 1>x>0.25, observed by Porta et al. [J. Solid State Chem.11, 135 (1974)] but do not support their tentative evidence for an increase in α for x < 0.25. The measured excess free energy of mixing can be completely accounted for by using either the calculated or the measured cation distributions. This suggests that the Madelung energy is approximately a linear function of composition in the solid solutions. The composition of NiOMgO solid solutions in equilibrium with NiAl2O4MgAl2O4 solid solutions has been calculated from the results and information available in literature.  相似文献   

3.
We studied the EPR spectra of ZnAl2O4-ZnCr2O4 solid solutions. The changes observed in the spectrum with increasing chromium concentration are attributed to the gradual development of magnetic interactions between paramagnetic ions in the solid solution. From the concentration dependence of the intensity of the isolated ions spectrum an approximate value of the range of the exchange interactions is deduced. The spectrum observed at high chromium concentrations is attributed to clusters of chromium ions coupled by exchange; the temperature dependence of its intensity indicates an antiferromagnetic character of the concentrated solid solutions.  相似文献   

4.
The standard free energy of formation of YbFe2O4, Yb2Fe3O7, YbFeO3, and Yb3Fe5O12 from metallic iron, Yb2O3, and oxygen was determined to be ?100.38, ?158.38, ?58.17, and ?283.40 kcal/mole, respectively, at 1200°C on the basis of the phase equilibria in the FeFe2O3Yb2O3 system. The FeFe2O3-Lanthanoid sesquioxide systems were classified into four types with respect to the assemblage of the ternary compounds in stable existence at 1200°C, and the standard free energy of formation of YbFeO3 was compared with those of the other lanthanoid-iron perovskites.  相似文献   

5.
Yanlong Kang 《Tetrahedron》2004,60(49):11219-11225
The use of simple calix[4]arenes 1a,b for NO2/N2O4 sensing and conversion is demonstrated, both in solution and in the solid state. Upon reacting with these gases, compounds 1a,b encapsulate reactive NO+ cations within their cavities with the formation of deeply colored (λmax∼570 nm) charge-transfer complexes 2a,b. Further functionalization of the calix[4]arene platform is reported for attachment to solid supports. Polymer-supported calixarene material 3 was prepared, which reversibly traps NO2/N2O4 with the formation of nitrosonium storing polymer 4. Material 4 was effectively used for nitrosation of amides.  相似文献   

6.
The thermodynamic properties of the Fe3O4ZnFe2O4 spinel solid solution were determined at 900°C by the use of the solid electrolyte galvanic cell Fe2O3 + Fe3O4|O2?|Fe2O3 + ZnxFe3?xO4The activity values obtained exhibit slight negative deviation from the ideal solution model. An analysis of the free energy of mixing of the spinel solid solution provided information on the distribution of cations between the tetrahedral and octahedral sites of the spinel lattice. This is the basis for the estimation of the free energy of formation of pure zinc ferrite from oxides. ΔG0ZnFe2O4 = ?2740 ? 1.6 T cal mole?1  相似文献   

7.
The phase relations in the Yb2O3Ga2O3CoO system at 1300 and 1200°C, the Yb2O3Ga2O3NiO system at 1300 and 1200°C, the Yb2O3Ga2O3CuO system at 1000°C and the Yb2O3Ga2O3ZnO system at 1350 and 1200°C, the Yb2O3Cr2O3CoO system at 1300 and 1200°C, the Yb2O3Cr2O3NiO system at 1300 and 1200°C, the Yb2O3Cr2O3CuO system at 1000°C, and the Yb2O3Cr2O3ZnO system at 1300 and 1200°C were determined in air by means of a classical quenching method. YbGaCoO4 (a = 3.4165(1) and c = 25.081(2) Å), YbGaCuO4 (a = 3.4601(4) and c = 24.172(6) Å), and YbGaZnO4 (a = 3.4153(5) and c = 25.093(7) Å), which are isostructural with YbFe2O4 (space group: R3m, a = 3.455(1) and c = 25.109(2) Å, were obtained as stable phases. In the Yb2O3Ga2O3NiO system and the Yb2O3Cr2O3MO system (M: Co, Ni, Cu, and Zn), no ternary stable phases existed.  相似文献   

8.
CoAl2O4, CoGa2O4, and their solid solution Co(GazAl1−z)2O4 have been studied using high temperature oxide melt solution calorimetry in molten 2PbO·B2O3 at 973 K. There is an approximately linear correlation between lattice parameters, enthalpy of formation from oxides, and the Ga content. The experimental enthalpy of mixing is zero within experimental error. The cation distribution parameters are calculated using the O’Neill and Navrotsky thermodynamic model. The enthalpies of mixing calculated from these parameters are small and consistent with the calorimetric data. The entropies of mixing are calculated from site occupancies and compared to those for a random mixture of Ga and Al ions on octahedral site with all Co tetrahedral and for a completely random mixture of all cations on both sites. Despite a zero heat of mixing, the solid solution is not ideal in that activities do not obey Raoult's Law because of the more complex entropy of mixing.  相似文献   

9.
ZnO/TiO2/SnO2 mixture was prepared by mixing its component solid oxides ZnO, TiO2 and SnO2 in the molar ratio of 4?1?1, followed by calcining the solid mixture at 200-1300 °C. The products and solid-state reaction process during the calcinations were characterized with powder X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and Brunauer-Emmett-Teller measurement of specific surface area. Neither solid-state reaction nor change of crystal phase composition took place among the ZnO, TiO2 and SnO2 powders on the calcinations up to 600 °C. However, formation of the inverse spinel Zn2TiO4 and Zn2SnO4 was detected at 700-900 and 1100-1200 °C, respectively. Further increase of the calcination temperature enabled the mixture to form a single-phase solid solution Zn2Ti0.5Sn0.5O4 with an inverse spinel structure in the space group of . The ZnO/TiO2/SnO2 mixture was photocatalytically active for the degradation of methyl orange in water; its photocatalytic mass activity was 16.4 times that of SnO2, 2.0 times that of TiO2, and 0.92 times that of ZnO after calcination at 500 °C for 2 h. But, the mass activity of the mixture decreased with increasing the calcination temperature at above 700 °C because of the formation of the photoinactive Zn2TiO4, Zn2SnO4 and Zn2Ti0.5Sn0.5O4. The sample became completely inert for the photocatalysis after prolonged calcination at 1300 °C (42 h), since all of the active component oxides were reacted to form the solid solution Zn2Ti0.5Sn0.5O4 with no photocatalytic activity.  相似文献   

10.
The crystal structures of three lithium titanates by neutron diffraction powder profile analysis were determined. The tetragonal anatase form of TiO2 becomes orthorhombic on ambient-temperature lithium insertion to Li0.5TiO2 due to the formation of TiTi bonds. The lithium partially occupies the highly distorted octahedral interstices in the anatase framework in fivefold-coordination with oxygen. Cubic LiTi2O4 formed by heating Li0.5TiO2 anatase has a normal spinel structure with Li in the tetrahedral sites. In Li2Ti2O4 formed by reacting LiTi2O4 spinel with n-BuLi at ambient temperature, the titanium remains in the spinel positions but the lithium is displaced, filling all the available octahedral sites.  相似文献   

11.
The systems CeO2RE2O3 (RE2O3 = C-type rare earth sesquioxide) were studied to: (1) investigate the claims of several workers for the existence of a complete solid solution series between CeO2 and RE2O3 and (2) to characterize the weak C-type X-ray diffraction peaks reported by others from samples in the single-phase fluorite solid solution region. It is shown that a complete solid solution series does not exist, and an explanation for the observations of others reporting such is tendered. It is also shown that the observation of C-type reflections in the supposed single-phase fluorite field can be attributed to the partial reduction of Ce4+ to Ce3+ at the firing temperature, resulting in the movement of the bulk composition into a two-phase field of the CeO2RE2O3Ce2O3 phase diagram, rather than the formation of a domain structure due to ordering.  相似文献   

12.
Raman spectroscopy is used to evidence both the nature of the interphase reaction between ZnO and MnO2 particles and its kinetic evolution. Zn cations migrate from the ZnO grains during oxygen vacancies formation process and diffuse into the MnO2 particles leading to an interphase region with an intermediate valence Mn+3-O-Mn+4. Large amounts of desorbed Zn cations promote the formation of ZnMn2O4 structure, in addition to the intermediate valence state. The system evolves towards complete formation of the spinel phase at higher thermal treatment times. The reactivity of the ZnO plays an important role in the formation of this interphase. Low-reactivity ZnO powder, in which the oxygen vacancies are previously produced, shows a stabilization of the intermediate valence state with very limited formation of the spinel phase. A clear correlation between the amount of the intermediate state interphase and the magnetic properties has been established.  相似文献   

13.
Phase relations in the system NiAl2O4Ni2SiO4 were studied in the pressure range 1.5 ~ 13.0 GPa and in the temperature range 800 ~ 1450°C. Two new phases, IV and V, were found in regions of pressure higher than 4 GPa. Phase V disproportionates into a mixture of Ni2SiO4-spinel, NiO, and Al2O3 at approximately 9.5 GPa and 1100°C. Phases III, IV, and V form a solid solution in some compositional range: phases IV and V have a composition around NiAl2O4·Ni2SiO4, whereas phase III spreads from NiAl2O4·Ni2SiO4 to the NiAl2O4-rich side. All the phases I ~ V are structurally considered to be spinel derivatives, “spinelloids,” with three kinds of tetrahedral groups; isolated tetrahedra TO4, linked ones T2O7, and triply linked ones T3O10. The ratios of isolated tetrahedra to linked ones are large in the higher-pressure phases and small in the lower-pressure phases. The difference of compositional range of phase III from that of phases IV and V is possibly explained by the avoidance of linked tetrahedra such as O3AlOAlO3.  相似文献   

14.
Magnetic diphase nanostructures of ZnFe2O4/γ-Fe2O3 were synthesized by a solvothermal method. The formation reactions were optimized by tuning the initial molar ratios of Fe/Zn. All samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, and Raman spectra. It is found that when the initial molar ratio of Fe/Zn is larger than 2, a diphase magnetic nanostructure of ZnFe2O4/γ-Fe2O3 was formed, in which the presence of ZnFe2O4 enhanced the thermal stability of γ-Fe2O3. Further increasing the initial molar ratio of Fe/Zn larger than 6 destabilized the diphase nanostructure and yielded traces of secondary phase α-Fe2O3. The grain surfaces of diphase nanostructure exhibited a spin-glass-like structure. At room temperature, all diphase nanostructures are superparamagnetic with saturation magnetization being increased with γ-Fe2O3 content.  相似文献   

15.
The structures of NaRu2O4 and Na2.7Ru4O9 are refined using neutron diffraction. NaRu2O4 is a stoichiometric compound consisting of double chains of edge sharing RuO6 octahedra. Na2.7Ru4O9 is a non-stoichiometric compound with partial occupancy of the Na sublattice. The structure is a mixture of single, double and triple chains of edge-shared RuO6 octahedra. NaRu2O4 displays temperature independent paramagnetism with . Na2.7Ru4O9 is paramagnetic, χ0= with and a Curie constant of 0.0119 emu/mol Oe K. Specific heat measurements reveal a small upturn at low temperatures, similar to the upturn observed in La4Ru6O19. The electronic contribution to the specific heat (γ) for Na2.7Ru4O9 was determined to be15 mJ/moleRu K2.  相似文献   

16.
The electronic and geometric structures and the dissociation energies of the isolated molecule of heme dimer (heme)2 = (FeC34H32O4N4)2 and its ion (heme) 2 + = (FeC34H32O4N4) 2 + in the states with different multiplicities have been calculated by the density functional theory B3LYP method with the Gen-1 = 6-31G*(Fe) + 6-31G(C,H,N,O) and Gen-2 = 6-311++G*(Fe) + 6-31G*(C,H,N,O) basis sets. The computation results are compared with the analogous calculated data on monomeric heme and hemin+, as well as the previously considered dimeric ferriporphyrin X molecule and ion FeC34H31O4N4) 2 0, + . In the heme dimer cation (heme) 2 + , which is identified in mass spectra, the rings are linked with each other by a pair of Fe carbonyl bridges Fe⋯Ob = C(OH) and a pair of hydrogen bridges OHb⋯N. According to the calculations, the most favorable state for (heme) 2 + is the sextet in which five unpaired electrons are approximately uniformly distributed over the metal atoms, whereas the states with higher multiplicities 8 and 10 are, respectively, 0.15 and 0.20 eV higher on the energy scale. For the neutral dimer (heme)2, the quintet is favorable in which each of the two Fe atoms has two unpaired electrons, and the states with the higher multiplicities 7 and 9 are only 0.10–0.15 eV higher. The calculated energies of dissociation D of the dimers into monomers point to a rather high stability of the (heme) 2 + (D ∼ 1.4 1.4eV) and to a low stability of the neutral dimer (heme)2 (D ∼ 0.3 eV). The R(Fe⋯Ob) distances in the bridges in (heme) 2 + are 0.2–0.4 ? shorter than in (heme)2. The trends in the behavior of the energetic and structural characteristics of the dimers (R(Fe-N), displacements of Fe atoms from the porphyrin ring plane, character of ring distortions, etc.) associated with the involvement of the and AOs of Fe atoms in bonding, as well as the spin density distribution over the Fe atoms and the rings, are analyzed as a function of the multiplicity and charge of the system. Differences in the character of interaction of the heme and ferriporphyrin dimers with molecular oxygen are discussed. Original Russian Text ? O.P. Charkin, N.M. Klimenko, D.O. Charkin, S.H. Lin, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 7, pp. 1166–1174.  相似文献   

17.
The phase equilibria in the V2O3Ti2O3TiO2 system have been determined at 1473°K by the quench method, using both sealed tubes and controlled gaseous buffers. For the latter, CO2H2 mixtures were used to vary the oxygen fugacity between 10?10.50 and 10?16.73 atm. Under these conditions the equilibrium phases are: a sesquioxide solid solution between V2O3 and Ti2O3 with complete solid solubility and an upper stoichiometry limit of (V, Ti)2O3.02; an M3O5 series which has the V3O5 type structure between V2TiO5 and V0.69Ti2.31O5 and the monoclinic pseudobrookite structure between V0.42Ti2.58O5 and Ti3O5; series of Magneli phases, V2Tin?2O2n?1TinO2n?1, n = 4–8; and reduced rutile phases (V, Ti)O2?x, where the lower limit for x is a function of the V(V + Ti) ratio. The extent of the different solid solution areas and the location of the oxygen isobars have been determined.  相似文献   

18.
The enthalpies of solution of NaRb[B4O5(OH)4]·4H2O in approximately 1 mol dm−3 aqueous hydrochloric acid and of RbCl in aqueous (hydrochloric acid + boric acid + sodium chloride) were determined. From these results and the enthalpy of solution of H3BO3 in approximately 1 mol dm−3 HCl(aq) and of sodium chloride in aqueous (hydrochloric acid + boric acid), the standard molar enthalpy of formation of −(5128.02 ± 1.94) kJ mol−1 for NaRb[B4O5(OH)4]·4H2O was obtained from the standard molar enthalpies of formation of NaCl(s), RbCl(s), H3BO3(s) and H2O(l). The standard molar entropy of formation of NaRb[B4O5(OH)4]·4H2O was calculated from the Gibbs free energy of formation of NaRb[B4O5(OH)4]·4H2O computed from a group contribution method.  相似文献   

19.
The calcium cobalt oxide CaCo2O4 was synthesized for the first time and characterized from a powder X-ray diffraction study, measuring magnetic susceptibility, specific heat, electrical resistivity, and thermoelectric power. CaCo2O4 crystallizes in the CaFe2O4 (calcium ferrite)-type structure, consisting of an edge- and corner-shared CoO6 octahedral network. The structure of CaCo2O4 belongs to an orthorhombic system (space group: Pnma) with lattice parameters, a=8.789(2) Å, b=2.9006(7) Å and c=10.282(3) Å. Curie-Weiss-like behavior in magnetic susceptibility with the nearly trivalent cobalt low-spin state (Co3+, 3d, S=0), semiconductor-like temperature dependence of resistivity (ρ=3×10−1 Ω cm at 380 K) with dominant hopping conduction at low temperature, metallic-temperature-dependent large thermoelectric power (Seebeck coefficient: S=+147 μV/K at 380 K), and Schottky-type specific heat with a small Sommerfeld constant (γ=4.48(7) mJ/Co mol K2), were observed. These results suggest that the compound possesses a metallic electronic state with a small density of states at the Fermi level. The doped holes are localized at low temperatures due to disorder in the crystal. The carriers probably originate from slight off-stoichiometry of the phase. It was also found that S tends to increase even more beyond 380 K. The large S is possibly attributed to residual spin entropy and orbital degeneracy coupled with charges by strong electron correlation in the cobalt oxides.  相似文献   

20.
Isothermal gravimetry and magnetic susceptibility of MoO3, MoAl2O3, CoAl2O3 and CoMoAl2O3 with/without Na+ ions have been studied in order to investigate the reducibility of the systems in H2 H2—hydrocarbons and H2—hydro-carbon—thiophene. These studies have evidenced the formation of metallic cobalt during reduction of cobalt—moly catalysts containing Na+ ions in the Al2O3 support. This metallic cobalt accelerates the reduction of supported MoO3. However, in the absence of sodium, cobalt exerts an inhibitory influence on the reduction of MoAl2O3. The inhibition is caused mainly due to retention of the water evolved during the process by well-dispersed Co2+ ions which are incapable of undergoing reduction. The presence of sulfur also kelps in suppressing the reduction to cobalt metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号