首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Singlet oxygen, created in photosensitization, peroxidizes unsaturated fatty acids of the membrane's lipids. This generates alcoholic or aldehyde groups at double bonds' breakage points. In a previous study, we examined the leakage of a K+‐induced cross‐membrane electric potential of liposomes that undergo photosensitization. The question remains to what extent peroxidized lipids can compromise the stability of the membrane. In this study, we studied the effect of the oxidatively modified lipids PGPC and ALDOPC in the membrane on its stability, by monitoring the membrane electric potential with the potentiometric dye DiSC2(5). As the content of the modified lipids increases the membrane becomes less stable, and even at just 2% of the modified lipids the membrane's integrity is affected, in respect to the leakage of ions through it. When the liposomes that contain the modified lipids undergo photosensitization by hematoporphyrin, the lipid bilayer becomes even more unstable and passage of ions is accelerated. We conclude that the existence of lipids with a shortened fatty acid that is terminated by a carboxylic acid or an aldehyde and more so when photosensitized damage occurs to unsaturated fatty acids in lecithin, add up to a critical alteration of the membrane, which becomes leaky to ions.  相似文献   

2.
Photofrin®, a photosensitizer used in the photodynamic therapy of cancer, selectively localizes in cellular membranes. Upon exposure to visible light, Photofrin® produces singlet oxygen (1O2), which reacts with membrane polyunsaturated fatty acids forming lipid hydroperoxides. Transition metals, such as Fe2+, catalyze the production of cytotoxic free radicals from lipid hydroperoxides. Ascorbate reduces ferric to ferrous iron, further augmenting lipid peroxidation. Therefore, to increase the efficacy of Photofrin® photosensitization, we added 20 μM ferrous sulfate and 100 μM ascorbic acid, in an aqueous layer over SCC-25 oral squamous cell carcinoma cells during in vitro illumination. In electron paramagnetic resonance spin trapping experiments, using POBN (-(4-pyridyl-1-oxide)-N-tert-butylnitrone), we observed that the presence of this pro-oxidant combination greatly increases the production of membrane-derived lipid free radicals. The effect was time dependent but only partially concentration dependent. Trypan blue dye exclusion demonstrated that this increase in lipid radical formation correlated with cytotoxicity. These observations support the hypothesis that Photofrin® photosensitization leads to lipid hydroperoxide formation, which increases the cell's susceptibility to iron-induced Fenton chemistry. The resulting free radical-mediated lipid peroxidation results in cell death. From these data we hypothesize that the efficacy of photodynamic therapy of superficial cancer might be increased by the topical application of the pro-oxidant combination of iron and ascorbate. Furthermore, their use will probably allow lower doses of Photofrin® without compromising antitumor effect.  相似文献   

3.
Singlet oxygen (1O2) can be quenched by water, lipids, proteins, nucleic acids and other small molecules. Polyunsaturated fatty acids (PUFA) of cells principally quench 1O2 by chemical mechanisms, producing lipid hydroperoxides, while proteins physically and chemically quench 1O2. Because cell lines can have different PUFA and protein levels, we hypothesized that 1O2 toxicity will vary between cell lines. We used Photofrin as a source of 1O2. Exposure of nine different leukemia cell lines (CEM, HEL, HL-60, K-562, KG-1, L1210, Molt-4, THP-1 and U-937) to Photofrin and light results in changes in membrane permeability (trypan blue) that vary with cell line. The greater the lipid content of the cell line, the less susceptible they are to membrane damage. When the cell media was supplemented with docosahexaenoic acid (DHA, 22:6), the overall unsaturation of cellular lipids increased. Photofrin and light resulted in increased radical formation in these supplemented cells compared to controls; however, there was no difference in membrane permeability between DHA-supplemented and control cells. Lipid-derived radical formation (electron paramagnetic resonance spin trapping) was cell line dependent; but no correlation between lipid content of cells and radical formation was found. However, we found that the greater the protein content of cells the more they were protected against membrane damage induced by Photofrin photosensitization. This suggests that cellular proteins are a key target for 1O2-mediated toxicity. A remarkable observation is that cell size correlates inversely with ability of cells to cope with a given flux of 1O2.  相似文献   

4.
Radiation oxidative damage to plasma membrane and its consequences to cellular radiosensitivity have received increasing attention in the past few years. This review gives a brief account of radiation oxidative damage in model and cellular membranes with particular emphasis on results from our laboratory. Fluorescence and ESR spin probes have been employed to investigate the structural and functional alterations in membranes after y-irradiation. Changes in the lipid bilayer in irradiated unilamellar liposomes prepared from egg yolk lecithin (EYL) were measured by using diphenylhexatriene (DPH) as a probe. The observed increase in DPH polarization and decrease in fluorescence intensity after γ-irradiation of liposomes imply radiation-induced decrease in bilayer fluidity. Inclusion of cholesterol in liposome was found to protect lipids against radiation damage, possibly by modulation of bilayer organization e.g. lipid packing. Measurements on dipalmitoyl phosphatidylcholine (DPPC) liposomes loaded with 6-carboxyfluorescein (CF) showed radiation dose-dependent release of the probe indicating radiation-induced increased permeability. Changes in plasma membrane permeability of thymocytes were monitored by fluorescein diacetate (FDA) and induced intracellular reactive oxygen species (ROS) were determined by 2,7-dichlorodihydro fluorescein diacetate (DCH-FDA). Results suggest a correlation between ROS generation and membrane permeability changes induced by radiation within therapeutic doses (0-10 Gy). It is concluded that increase in membrane permeability was the result of ROS-mediated oxidative reactions, which might trigger processes leading to apoptotic cell death after radiation exposure.  相似文献   

5.
Abstract— The cytotoxicity that ensues following photosensitization by hematoporphyrin derivative (Hpd) is attributed to production of singlet oxygen. Many of the cellular end points reported to be affected are localized to membranes, hydrophobic environments conducive to partitioning of hydrophobic porphyrins in Hpd. In order to test the hypothesis that efficacy of Hpd-induced photosensitization is enhanced by its ability to freely enter cells or subcellular organelles, we immobilized Hpd on a sepharose support. This immobilized reagent was found to produce 1O2 when photoradiated, in yields similar to those observed for Hpd in solution, as evidenced by the bleaching of p -nitrosodimethylaniline in the presence of imidazole. The immobilized Hpd was capable of photosensitizing, i.e. inhibit, cytochrome c oxidase activity in intact mitochondrial membranes and in aqueous solution. However, enzymes located on the interior of mitochondrial membranes (F0F1 ATP synthase and succinate dehydrogenase), in the mitochondrial matrix (malate dehydrogenase), or on the inside of the plasma membrane, (Na++ K+)- ATPase, were unaffected by immobilized Hpd plus photoradiation compared to free Hpd. The results suggest that photosensitization by Hpd most likely arises from entry of the photosensitizer into the biological membrane, although proteins on the exterior membrane surface may be susceptible to damage by 1O2 produced in proximity to their location.  相似文献   

6.
In this paper a rapid and highly efficient method for controlled incorporation of fluorescent lipids into living mammalian cells is introduced. Here, the fluorescent molecules have two consecutive functions: First, they trigger rapid membrane fusion between cellular plasma membranes and the lipid bilayers of their carrier particles, so called fusogenic liposomes, and second, after insertion into cellular membranes these molecules enable fluorescence imaging of cell membranes and membrane traffic processes. We tested the fluorescent derivatives of the following essential membrane lipids for membrane fusion: Ceramide, sphingomyelin, phosphocholine, phosphatidylinositol-bisphosphate, ganglioside, cholesterol, and cholesteryl ester. Our results show that all probed lipids could more efficiently be incorporated into the plasma membrane of living cells than by using other methods. Moreover, labeling occurred in a gentle manner under classical cell culture conditions reducing cellular stress responses. Staining procedures were monitored by fluorescence microscopy and it was observed that sphingolipids and cholesterol containing free hydroxyl groups exhibit a decreased distribution velocity as well as a longer persistence in the plasma membrane compared to lipids without hydroxyl groups like phospholipids or other artificial lipid analogs. After membrane staining, the fluorescent molecules were sorted into membranes of cell organelles according to their chemical properties and biological functions without any influence of the delivery system.  相似文献   

7.
A set of photo-switchable monopeptides derived from cis-β-dibenzodiazocine-l -alanine (cis-DBDAA) have been designed and synthesized, which are capable of photo-click reacting with diaryltetrazoles or diarylsydnones in a hydrophobic phospholipid bilayer environment. The DBDAA monopeptides include both a hydrophobic tail on C-terminal, providing high affinity toward lipid membrane, and a modularized functional moiety on N-terminal, enabling rapid optimization of the self-assembly strength to form multifunctional supramolecules. With the cis-DBDAA monopeptides photo-switched into trans-configuration, we were able to disrupt the supramolecular assembly through an efficient photo-click reaction across the lipid bilayer of liposomes. We reveal that the performance of the photo-click reactions between the monopeptides and photo-generated nitrile imine intermediates is significantly enhanced by enrichment of both reactants in the hydrophobic membrane lamel of liposomes. Enrichment of the DBDAA monopeptide in lipid phase serves as a convenient method to introduce bioorthogonal chemical handles on live cell membranes, which enables fluorescence labelling of single cell's membrane with high spatiotemporal resolution to facilitate the studies on cell membrane dynamics.  相似文献   

8.
Treatment of metal ions' wastes is getting more interest due to the tight regulations for environmental protection. Dialysis, a membrane based process with the concentration difference as the driving force, may be used for separation of metal ions from wastewater. In this study membranes with different pore sizes including Accurel, Celgard, GVHP, PM30 and PTHK membranes were employed to characterise the transport of zinc ion in various (0.01, 0.1, 0.5, 1, 5 and 10 w/v percent) initial feed concentrations. The results show that low initial feed concentration causes less passage of ions through the membrane due to low driving force, i.e. concentration gradient across the membrane. This result is expected. However the effect of membrane pore size is somehow unexpected. It was found that the large pore size membranes provide less penetration of the metal ions through the membrane. This reproducible result has been explained based on the transport mechanism. Two types of mechanisms, i.e. extensive and intensive mechanisms, have been suggested for metal ion transport through different pore size membranes.  相似文献   

9.
Bactericidal mode of titanium dioxide photocatalysis   总被引:38,自引:0,他引:38  
When exposed to near-UV light, titanium dioxide (TiO2) exhibits a strong bactericidal activity. However, the killing mechanism(s) underlying the TiO2 photocatalytic reaction is not yet well understood. The aim of the present study is to investigate the cellular damage sites and their contribution to cell death. A sensitive approach using o-nitrophenol β- galactopyranosideside (ONPG) as the probe and Escherichia coli as model cells has been developed. This approach is used to illustrate damages to both the cell envelope and intracellular components caused by TiO2 photocatalytic reaction. Treatment of E. coli with TiO2 and near-UV light resulted in an immediate increase in permeability to small molecules such as ONPG, and the leakage of large molecules such as β- galactosidase after 20 min. Kinetic data showed that cell wall damage took place in less than 20 min, followed by a progressive damage of cytoplasmic membrane and intracellular components. The results from the ONPG assay correlated well with the loss of cell viability. Cell wall damage followed by cytoplasmic membrane damage leading to a direct intracellular attack has therefore been proposed as the sequence of events when microorganisms undergo TiO2 photocatalytic attack. It has been found that smaller TiO2 particles cause quicker intracellular damage. Evidence has been obtained that indicated that the TiO2 photocatalytic reaction results in continued bactericidal activity after the UV illumination terminates.  相似文献   

10.
11.
To study the mechanism of photodynamic nerve cell killing, isolated crayfish mechanoreceptor neurons were photosensitized by the sulfonated aluminum ophthalocyanine Photosens. Neuron activity was continuously recorded until irreversible abolition. Intense (10(-5) M Photosens) or weak (10(-7) M Photosens) photosensitization induced different bioelectric neuron responses: firing activation followed by irreversible depolarization block or gradual inhibition until firing abolition, respectively. These bioelectric responses were accompanied by different biochemical and morphological changes. In the case of intense photosensitization, neuron nuclei swelled and then shrank. Succinate dehydrogenase (SDH) was inhibited, and the plasma membrane was compromised just after firing cessation. Weak photosensitization did not induce these changes but caused swelling of the endoplasmic reticulum and destruction of the matrix, cristae and membranes in some of the mitochondria. Other mitochondria, however, retained the normal structure. Plasma membrane damage, SDH inhibition, nucleus shrinkage and impairment of the nuclear border occurred after 2-4 h. It is concluded that intense photosensitization induced necrotic processes during irradiation, whereas weaker impact caused delayed necrosis 2-4 h later. The observed electrophysiological neuron responses to photodynamic therapy may be considered as early hallmarks of different modes of forthcoming cell death.  相似文献   

12.
The subcellular photodamage to endothelial cells in culture, revealed by transmission electron microscopy, was correlated with discrete delivery pathways of hematoporphyrin (HP). Cell detachment from the extracellular matrix, prominent water influx starting at the outer membrane and formation of blebs followed by cell death were the result of photodynamic damage induced by aqueous HP. Serum-bound HP was internalized by endocytosis and accumulated in lysosomal compartments as located after photosensitization. Obstructed lysosomal membranes, degradation of chromatin and swelling of endoplasmic reticulum were revealed in these cells. Red blood cells (RBCs), preincubated with HP, delivered low amounts of the drug to endothelial cells. The photodamage was limited to the nucleus and nucleolus. The role of photosensitizer delivery pathways in cancer cell damage is discussed.  相似文献   

13.
Shao C  Kendall EL  Devoe DL 《Lab on a chip》2012,12(17):3142-3149
Studies of lipid rafts, ordered microdomains of sphingolipids and cholesterol within cell membranes, are essential in probing the relationships between membrane organization and cellular function. While in vitro studies of lipid phase separation are commonly performed using spherical vesicles as model membranes, the utility of these models is limited by a number of factors. Here we present a microfluidic device that supports simultaneous electrical measurements and confocal imaging of on-chip bilayer lipid membranes (BLMs), enabling real-time multi-domain imaging of membrane organization. The chips further support closed microfluidic access to both sides of the membrane, allowing the membrane boundary conditions to be rapidly changed and providing a mechanism for dynamically adjusting membrane curvature through application of a transmembrane pressure gradient. Here we demonstrate the platform through the study of dynamic generation and dissolution of ordered lipid domains as membrane components are transported to and from the supporting annulus containing solvated lipids and cholesterol.  相似文献   

14.
Membrane activity of biomimetic facially amphiphilic antibiotics   总被引:1,自引:0,他引:1  
Membranes are a central feature of all biological systems, and their ability to control many cellular processes is critically important. As a result, a better understanding of how molecules bind to and select between biological membranes is an active area of research. Antimicrobial host defense peptides are known to be membrane-active and, in many cases, exhibit discrimination between prokaryotic and eukaryotic cells. The design of synthetic molecules that capture the biological activity of these natural peptides has been shown. In this report, the interaction between our biomimetic structures and different biological membranes is reported using both model vesicle and in vitro bacterial cell experiments. Compound 1 induces 12% leakage at 20 microg/mL against phosphatidylglycerol (PG)-phosphatidylethanolamine (PE) vesicles vs only 3% leakage at 200 microg/mL against phosphatidyl-L-serine (PS)-phosphatidylcholine (PC) vesicles. Similarly, a 40% reduction in fluorescence is measured in lipid movement experiments for PG-PE compared to 10% for PS-PC at 600 s. A 30 degrees C increase in the phase transition of stearoyl-oleoyl-phosphatidylserine is observed in the presence of 1. These results show that lipid composition is more important for selectivity than overall net charge. Additionally, the overall concentration of a given lipid is another important factor. An effort is made to connect model vesicle studies with in vitro data and naturally occurring lipid compositions.  相似文献   

15.
The photosensitizing activity of enoxacin, 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-1,8-naphthyridine-3-carboxilic acid (ENX), toward membranes and DNA has been studied, taking into account human erythrocyte photohemolysis, unilamellar liposome alterations and plasmid pBR322 DNA photocleavage. Hydroxyl radicals and an aromatic carbene generated from ENX photode-fluorination seem to be the active intermediates involved in the photosensitization process. The steady-state photolysis products do not participate in the process. The mechanism of photosensitization responsible for the membrane damage depends on the oxygen concentration and follows a different path with respect to that operative for DNA cleavage. Between oxygenated radicals, the hydroxyl seems the species mainly responsible for membrane damage, whereas DNA cleavage is mainly produced by the carbene intermediate. A molecular mechanism of the photosensitization induced by ENX is proposed.  相似文献   

16.
Structure–activity relationships have been widely reported for porphyrin and phthalocyanine photosensitizers, but not for phenothiazinium derivatives. Here, four phenothiazinium salts (methylene blue, toluidine blue O, 1,9‐dimethyl methylene blue and the pentacyclic derivative DO15) were used to investigate how the ability to damage membranes is affected by membrane/solution partition, photophysical properties and tendency to aggregation of the photosensitizer. These two latter aspects were studied both in isotropic solutions and in membranes. Membrane damage was assessed by leakage of a fluorescent probe entrapped in liposomes and by generation of thiobarbituric acid‐reactive species (TBARS), while structural changes at the lipid bilayer were detected by small‐angle X‐ray scattering. We observed that all compounds had similar singlet‐oxygen quantum yields in ethanol, but only the photosensitizers that had higher membrane/solution partition (1,9‐dimethyl methylene blue and DO15, the latter having the higher value) could permeabilize the lipid bilayer. Moreover, of these two photosensitizers, only DO15 altered membrane structure, a result that was attributed to its destabilization of higher order aggregates, generation of higher amounts of singlet oxygen within the membranes and effective electron‐transfer reaction within its dimers. We concluded that membrane‐based protocols can provide a better insight on the photodynamic efficiency of the photosensitizer.  相似文献   

17.
Treatment in vitro of Ehrlich ascites tumor cells or human fibroblasts with 8-methoxypsoralen (8-MOP, 2.4 microM) and UVA irradiation results in a 30% and 60% respectively reduction in lysosomal beta-galactosidase activity in situ. Under identical conditions one 8-MOP adduct was formed per 2 X 10(4) bases of DNA, one 8-MOP adduct was formed per approximately 10(4) tRNA molecules and one per approximately 100 ribosomes. It is suggested that the decrease in lysosomal beta-galactosidase activity is a result of leakage through the lysosomal membrane caused by psoralen-UVA damage of the lipids in the membrane, since no effect was found on beta-galactosidase in vitro. These results indicate that the lysosomes may also be a target for cellular photodamage by 8-methoxy-psoralen.  相似文献   

18.
Abstract The purpose of this study was to investigate three possible causes of membrane damage following UV irradiation: photooxidation of membrane thiol (SH) groups, peroxidation of membrane lipids and inhibited synthesis of membrane proteins. Thiol loss was not observed. Thin-layer chromatography showed a four-fold increase in several primary lipid peroxidation products such as hydroperoxyl lipids in the epithelial membrane preparations isolated from irradiated lenses. The formation of new hydroxyl lipid bands not seen in control preparations was also observed in isolated membranes from irradiated lenses. Irradiation in the presence or absence of oxygen produced lipid peroxidation products. Aerobic irradiation produced small, but statistically significant increases in lipid hydroxyls and hydroperoxyls relative to controls. Repair of initial damage might be compromised by the observed 60% reduction in rate of protein synthesis measured in lens membranes following irradiation. Synthesis was affected by means other than depleted potassium or elevated calcium levels.  相似文献   

19.
PEG-12-acyloxystearates constitute a novel class of pharmaceutical solubilizers and are synthesized from polyethylene glycol and 12-hydroxystearic acid, which has been esterified with a second acyl chain. The hemolytic activity of these surfactants decreases drastically with increasing pendant acyloxy chain length, and surfactants with an acyloxy chain of 14 carbon atoms or more are essentially nonhemolytic. In this paper, the interactions of PEG-12-acyloxystearates (acyloxy chain lengths ranging from 8 to 16 carbon atoms) with phosphatidylcholine vesicles, used as a model system for erythrocyte membranes, were studied in search of an explanation for the large variations in hemolytic activity. Surfactant-induced alterations of membrane permeability were investigated by studying the leakage of vesicle-entrapped calcein. It was found that all of the surfactants within the series interact with the vesicle membranes and cause slow leakage at elevated surfactant concentrations, but with large variations in leakage kinetics. The initial leakage rate decreases rapidly with increasing pendant acyloxy chain length. After prolonged incubation, on the other hand, the leakage is not a simple function of acyloxy chain length. The effect of the surfactants on membrane integrity was also investigated by turbidity measurements and cryo-transmission electron microscopy. At a surfactant/lipid molar ratio of 0.4, the vesicle membranes are saturated with surfactant. When the surfactant/lipid molar ratio is further increased, the vesicle membranes are progressively solubilized into mixed micelles. The rate of this process decreases strongly with increasing acyloxy chain length. When comparing the results of the different experiments, it can be concluded that there is no membrane permeabilization below saturation of the vesicle membranes. The large variations in the kinetics suggest that several steps are involved in the mechanism of leakage induced by PEG-12-acyloxystearates and that their relative rates vary with acyloxy chain length. The slow kinetics may in part be explained by the low critical micelle concentrations (CMCs) exhibited by the surfactants. The CMCs were found to be in the range of 0.003-0.025 microM.  相似文献   

20.
We recently reported that variations in cellular phototoxicity among a series of alkynyl-substituted zinc trisulfophthalocyanines (ZnPcS3Cn) correlates with their hydrophobicity, with the most amphiphilic derivatives showing the highest cell uptake and phototoxicity. In this study we address the role of the plasma membrane in the photodynamic response as it relates to the overall hydrophobicity of the photosensitizer. The membrane tracker dye 1-[4(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), which is incorporated into plasma membranes by endocytosis, was used to establish plasma membrane uptake by EMT-6 cells of the ZnPcS3C, by colocalization, and TMA-DPH membrane uptake rates after photodynamic therapy were used to quantify membrane damage. TMA-DPH colocalization patterns show plasma membrane uptake of the photosensitizers after short 1 h incubation periods. TMA-DPH plasma membrane uptake rates after illumination of the photosensitizer-treated cells show a parabolic relationship with photosensitizer hydrophobicity that correlates well with the phototoxicity of the ZnPcS3C,. After a 1 h incubation period, overall phototoxicity correlates closely with the postillumination rate of TMA-DPH incorporation into the cell membrane, suggesting a major role of plasma membrane damage in the overall PDT effect. In contrast, after a 24 h incubation, phototoxicity shows a stronger but imperfect correlation with total cellular photosensitizer uptake rather than TMA-DPH membrane uptake, suggesting a partial shift in the cellular damage responsible for photosensitization from the plasma membrane to intracellular targets. We conclude that plasma membrane localization of the amphiphilic ZnPcS3C6-C9 is a major factor in their overall photodynamic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号