首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Phosphotungstic acid (PWA) was used for accumulation of nickel ions at the carbon paste electrode for preparation of PWA-modified CPE (PWA/CPE). The PWA was evenly mixed with graphite powder and paraffin oil. Then, for preparation of Ni/PWA/CPE, Ni ions were included onto the PWA/CPE surface through immersion method at open circuit condition. The scanning electron microscopy (SEM), energy-dispersive spectroscopy and electrochemical methods were used to verify the prepared electrodes. The SEM images reveal that morphology of the CPE was influenced by PWA addition. Application of the Ni/PWA/CPE for methanol oxidation was explored by various electrochemical techniques. Electrochemical response of methanol oxidation at the surface of Ni/PWA/CPE was 2.5 times higher than that Ni/CPE. The obtained results indicated that the modified electrode exhibited high electrocatalytic activity toward methanol oxidation. Then, catalytic rate constant was found to be 8.25 × 104 cm3 mol ?1 s?1 using chronoamperometry method. Furthermore, the effects of several parameters, such as PWA loading, NiSO4 concentration, accumulation time and methanol concentration toward methanol oxidation at the surface of this modified electrode as well as stability, have been investigated.  相似文献   

2.
In the present research, the electro oxidation of methanol was investigated by different electrochemical methods at a carbon paste electrode (CPE) modified with bis(salicylaldehyde)‐nickel(II)‐dihydrate complex (Ni(II)‐BS) and reduced graphene oxide (RGO) (which named Ni(II)‐BS/RGO/CPE) in an alkaline solution. This modified electrode showed very efficient activity for oxidation of methanol. It was found that methanol was oxidized by NiOOH groups generated by further electrochemical oxidation of nickel (II) hydroxide on the surface of the modified electrode. The rate constant and electron transfer coefficient were calculated to be 2.18 s?1 and 0.4, respectively. The anodic peak currents revealed a linear dependency with the square root of scan rate. This behaviour is the characteristic of a diffusion controlled process, so the diffusion coefficient of methanol was found to be 1.16×10?5 cm2 s?1 and the number of transferred electron was calculated to be 1. Moreover, differential pulse voltammetry (DPV) investigations showed that the peak current values were proportional to the concentration of methanol in two linear ranges. The obtained linear ranges were from 0.5 to 100.0 µM (R2=0.991) and 400.0 to 1300.0 µM (R2=0.992), and the detection limit was found to be 0.19 µM for methanol determination. Generally, the Ni(II)‐BS/RGO/CPE sensor was used for determination of methanol in an industrial ethanol solution containing 4.0 % methanol.  相似文献   

3.
A nickel hydroxide-modified nickel electrode (Ni(OH)2/Ni) was successfully prepared by the cyclic voltammetry (CV) method and the electrocatalytic properties of the electrode for formaldehyde and methanol oxidation have been investigated respectively. The Ni(OH)2/Ni electrode exhibits high electrocatalytic activity in the reaction. A new method has been developed for formaldehyde determination at the nickel hydroxide-modified nickel electrode and the experimental parameters were optimized. The oxidation peak current is linearly proportional to the concentration of formaldehyde in the range of 7.0 × 10?5 to 1.6 × 10?2 M with a detection limit of 2.0 × 10?5 M. Recoveries of artificial samples are between 93.3 and 103.5%. The effect of scan rate and methanol concentration on the electrochemical behavior of methanol were investigated respectively.  相似文献   

4.
A novel carbon paste electrode modified with carbon nanotubes and 5‐amino‐2′‐ethyl‐biphenyl‐2‐ol (5AEB) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for electrocatalytic oxidation of levodopa (LD) and carbidopa (CD), is described. Cyclic voltammetry (CV) was used to investigate the redox properties of this modified electrode at various scan rates. The apparent charge transfer rate constant, ks, and transfer coefficient, a, for electron transfer between 5AEB and CPE were calculated as 17.3 s?1 and 0.5, respectively. Square wave voltammetry (SWV) exhibits a linear dynamic range from 2.5×10?7 to 2.0×10?4 M and a detection limit of 9.0×10?8 M for LD.  相似文献   

5.
Nickel ions were incorporated in NaY zeolite according to cation exchange mechanism. Then NiY zeolite was used as modifier for preparation of modified carbon paste electrode. The electrochemical behavior of NiY-modified carbon paste electrode (NiY/CPE) was studied in alkaline solution using cyclic voltammetry method. Ability of different electrodes containing NiY/CPE, Ni-NiY/CPE, Ni-NaY/CPE, and Ni/CPE for electrocatalytic oxidation of methanol was compared (three last electrodes prepared by open circuit accumulation of Ni(II) ions on the surface of NiY/CPE, NaY/CPE, and bare CPE, respectively). Results show that Ni-NiY/CPE is best catalyst for the electrochemical oxidation of methanol in alkaline solution and both process of earlier Ni ion incorporation through cation exchange in NaY zeolite and open circuit accumulation of Ni ion on the surface of electrode are essential to have good catalyst. Effect of graphite–zeolite ratio on electrocatalytic current was studied and 3:1 ratio of graphite–zeolite was selected as optimum ratio for preparing electrode. Ni-NiY/CPE has very good stability toward the methanol oxidation in concentration range of 0.005 to 0.5 M. Finally, using chronoamperometric method, the catalytic rate constant (k) for methanol was found to be 1.56 × 104 cm3 mol−1 s−1.  相似文献   

6.
In this study, the electrocatalytic oxidation of methanol at nickel modified ionic liquid/carbon paste electrode (Ni/IL/CPE) in alkaline medium is presented. The ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, is incorporated into the electrode as a binder. Electrochemical impedance spectroscopy is employed to evaluate the electron transfer rate of this electrode. Ni(II) ions are incorporated into the electrode by immersion of this electrode in 1.0?M nickel sulfate solution. Cyclic voltammetry and chronoamperometry techniques are used for the electrochemical study of this modified electrode in the absence and the presence of methanol. The effect of methanol concentration on the anodic peak current shows an increase in the anodic peak current up to 1.25?M. Current density of Ni/IL/CPE for methanol oxidation in alkaline media is investigated by comparison with some of the previously reported electrodes. Results show that this electrode exhibits a high efficient electrocatalytic activity toward the oxidation of methanol with the current density of 17.6?mA?cm?2. The rate constant for chemical reaction between methanol and redox sites of electrode is calculated. This new proposed electrode is simple and efficient enough, and it can be widely used as anode in direct methanol fuel cell.  相似文献   

7.
In this paper, the use of a carbon paste electrode (CPE) modified by (E)‐3‐((2‐(2,4‐dinitrophenyl)hydrazono)methyl)benzene‐1,2‐diol (DHB) and carbon nanotubes (CNTs) for the determination of glutathione (GSH), uric acid (UA) and penicillamine (PA) is described. Initially, cyclic voltammetry was used to investigate the redox properties of the modified electrode in phosphate buffer. Next, the electrocatalytic oxidation of GSH via EC′ mechanism at the modified electrode was described. At the optimum pH of 7.0, the oxidation of GSH occurs at a potential that is 530 mV less positive than that of an unmodified carbon paste electrode. The values of the diffusion coefficient (D=2.5×10?6 cm2 s?1) and the catalytic rate constant (k=1.7×103 M?1 s?1) were calculated for GSH, using chronoamperometry. Based on differential pulse voltammetry, the oxidation of GSH exhibited a dynamic range between 0.4 and 700.0 µM and a detection limit (3σ) of 70.0 nM. Also, simultaneous determination of GSH, UA and PA was described at the modified electrode. Finally, this method was used for the determination of these substances in synthetic solutions and blood serum samples.  相似文献   

8.
In this paper, the use of molecular self-assembled monolayers of 5-(1,3-dithiolan-2-eyl)-3-methyl banzen-1,2-diol (DMD) on gold nanoparticles was described (DMD-AuNPs). The redox properties of modified electrode at various scan rates were investigated by cyclic voltammetry. A pair of well-defined quasi-reversible redox peaks of DMD were obtained at the modified electrode. Dramatically enhanced electrocatalytic activity was exemplified at the DMD-AuNPs, as an electrochemical sensor to investigate the electro-oxidation of isoprenaline (IP). With this modified electrode, the oxidation potential of the IP was shifted about 235 mV toward a less positive potential value than that of an unmodified electrode. The values of electron transfer coefficients (α = 0.5), catalytic rate constant (ks = 9.2 s?1) and diffusion coefficient (D = 8.9 × 10?5 cm2 s?1) were calculated for IP. The response of catalytic current with IP concentration showed a linear relation in the range from 0.5 to 800 µM with a detection limit of 0.21 µM. Finally, this modified electrode was used for the determination of IP in IP injections.  相似文献   

9.
The electrocatalytic oxidation of hydrazine at the aluminum electrode, modified by electroless deposition of nickel pentacyanonitrosylferrate (NiPCNF) on the surface of the electrode has been studied by cyclic voltammetry, chronoamperometry and rotating disk electrode voltammetry and the kinetics of the catalytic reaction were investigated. The results were explained using the theory of electrocatalytic reactions at chemically modified electrodes. It was found that a one-electron charge-transfer process is rate limiting and that the average values of the rate constant for the catalytic reaction and the diffusion coefficient, evaluated by different approaches, are 5.2×103 M–1s–1 and 8.5×10–6 cm2s–1, respectively. Further examinations of the modified electrodes show that the modifying layers (NiPCNF) on the aluminum substrate have reproducible behavior and a high level of stability, after exposing them in air and hydrazine solutions for a long time. Electronic Publication  相似文献   

10.
Titanium‐supported nanoscale flaky nickel electrode (nanoNi/Ti) was prepared by a hydrothermal process using hydrazine hydrate as a reduction agent. Its electrocatalytic activity as an electrocatalyst for the electrooxidation of glucose was evaluated in alkaline solutions using cyclic voltammetry (CV), chronoamperometric responses (CA) and electrochemical impedance spectra (EIS). The nanoNi/Ti electrode exhibits significantly high current density of glucose oxidation. A high catalytic rate constant of 1.67×106 cm3 mol?1 s?1 was calculated from amperometric responses on the nanoNi/Ti electrode. Low charge transfer resistances on the nanoNi/Ti in 0.5 M NaOH containing various concentrations of glucose were obtained according to the analysis for EIS. Furthermore, amperometric data show a linear dependence of the current density for glucose oxidation upon glucose concentration in the range of 0.05–0.6 mM with a sensitivity of 7.32 mA cm?2 mM?1. A detection limit of 0.0012 mM (1.2 μM) M glucose was found. Results show that the prepared nanoNi/Ti electrode presents high electrocatalytic activity for glucose oxidation.  相似文献   

11.
A sensitive electrochemical method was proposed for the determination of adenosine-5′-diphosphate (ADP) on an ionic liquid (IL) 1-(3-chloro-2-hydroxy-propyl)-3-methylimidazole chloride modified carbon paste electrode (CPE) in a pH 4.5 Britton-Robinson (B-R) buffer solution. Compared with CPE, IL modified CPE (CILE) showed strong electrocatalytic ability to promote the electrochemical oxidation of ADP. A well-defined irreversible oxidation peak of ADP appeared at +1.381 V with an adsorption-controlled process, which was due to the presence of high conductive IL on the electrode. The experimental conditions were optimized and the electrochemical parameters of ADP were calculated with the electron transfer coefficient (α) as 0.293, the electron transfer number (n) as 1.23, the apparent heterogeneous electron transfer rate constant (k s) as 3.325 × 10?6 s?1 and the surface coverage (ΓT) as 0.92 × 10?8 mol/cm2. Under the optimum conditions, the oxidation peak current was linear to ADP concentration in the range from 3.0 to 1000.0 μmol/L with the detection limit as 2.78 μmol/L (3σ) by differential pulse voltammetry. The CILE also eliminated the interferences of commonly coexisting substances and was successfully applied to detect the ADP artificial samples.  相似文献   

12.
In this work, an aqueous solution of sodium dodecylsulfate (SDS) surfactant is used as an additive for electropolymerization of N,N-dimethylaniline (DMA) onto carbon paste electrode (CPE), which is investigated as a novel matrix for deposition of nickel. The electrochemical oxidation of formaldehyde is studied at the surface of this modified electrode. The electrooxidation of formaldehyde was found to be more efficient on CPE modified with Ni/Poly(N,N-Dimethylaniline) (SDS), Ni/PDMA (SDS), than deposition Ni on CPE in alkaline solution. The electrochemical behavior and electrocatalytic activity of the electrode were studied using cyclic voltammetry and chronomethods studies. Also, the transfer second-order rate constant (k = 5.5 × 103 cm3 mol?1 s?1) between formaldehyde and nickel hydroxide was calculated. Moreover, in order to optimize of electrode and variables for efficient performance of Ni/PDMA (SDS)/CPE towards formaldehyde oxidations, the effect of various parameters such as number of potential cycles for preparation of polymer, nickel and formaldehyde concentration and accumulation time have been investigated.  相似文献   

13.
《Analytical letters》2012,45(4):697-707
Abstract

The preparation of a gold electrode modified by aminylferrocene (FcAI) covalently bound to L‐cysteine self‐assembled monolayer (L‐Cys/Au SAM) was described, and characterized by cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS). In pH 7.4 buffers, FcAI incorporated in L‐Cys/Au SAM gave a pair of well‐defined and quasi‐reversible cyclic voltammetric peaks at 0.109 vs. saturated calomel eletrode (SCE), characteristic of Fe(II)/Fe(III) redox couples of the Fc. The apparent surface electron transfer rate constant is 6.86 s?1 at the modified electrode. The immobilized Fc gave an excellent electrocatalytic activity for the oxidation of epinephrine (EP). The catalytic current of EP vs. its concentration has a good linear relation in the range of 1.7×10?7–1.0×10?4 mol/L, with the correlation coefficient of 0.9975 and detection limit of 1.8×10?8 mol/L. The modified electrode can be used for the determination of EP in practical injection. The method is simple, quick, sensitive, and accurate.  相似文献   

14.
The electrocatalytic oxidation of aspirin has been investigated on a nickel oxide-modified nickel electrode in alkaline solution. The process of oxidation and its kinetics have been investigated by using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy techniques and also steady-state polarization measurements. Voltammetric studies have indicated that in the presence of aspirin, the anodic peak current of low-valence nickel species increases, followed by a decrease in the corresponding cathodic current. This indicates that aspirin was oxidized on the redox mediator immobilized on the electrode surface via an electrocatalytic mechanism. The rate constant of the catalytic oxidation of aspirin and the electron transfer coefficient have been found to be 1.15×105 cm3 mol−1s−1 and 0.49, respectively. Impedance measurements show that aspirin is diffused into the bulk of the modifier film, and the oxidation process of aspirin occurs in the bulk of nickel oxide film. It has been shown that by using this modified electrode, aspirin can be determined with a detection limit of 4.8×10−5 and successfully applied for determination of aspirin in tablet.  相似文献   

15.
《Electroanalysis》2004,16(10):860-865
The electrocatalytic oxidation of sulfite has been studied on the cobalt pentacyanonitrosylferrate modified glassy carbon electrode (CoPCNF). The CoPCNF films on the glassy carbon electrodes show an excellent electrocatalytic activity toward the oxidation of sulfite in 0.5 M KNO3. The kinetics of the catalytic reaction was investigated by using cyclic voltammetry, rotating disk electrode (RDE) voltammetry and chronoamperometry. The average value of the rate constant, K, for the catalytic reaction and the diffusion coefficient, D, were evaluated by different approaches for sulfite and found to be 2.9×102 M?1s?1 and 4.6×10?6 cm2s?1, respectively. At a fixed potential under hydrodynamic conditions (stirred solutions), the oxidation current is proportional to the sulfite concentration and the calibration plot was linear over the concentration range 5×10?6–1×10?4 M. The detection limit of the method is 3×10?6 M., low enough for the trace sulfite determination.  相似文献   

16.
A new sol‐gel carbon composite electrode using hexacyanoferrate (HCF)‐Th(IV) ion pair as a suitable modifier is fabricated in the present study. The Th(IV)‐HCF‐sol‐gel carbon composite electrode (THCF‐CCE) has been prepared by mixing methyl trimethoxysilan (MTMOS) sol‐gel precursor and carbon powder with ion pair and then to fix in a plastic tube. Cyclic voltammetry and chronoamperometry were employed to study the electrochemical and electrocatalytic properties of proposed electrode. The apparent charge transfer rate constant, ks, and transfer coefficient, α, for electron transfer between ion‐pair and sol‐gel CPE were calculated as 3.10 ± 0.10 s?1 and 0.52, respectively. The THCF‐CCE showed a significant electrocatalytic activity towards oxidation of ascorbic acid (AA) and dopamine (DA) in 0.1 M acidic phosphate buffer solutions (pH 3) containing KCl as a supporting electrolyte. The mean value of the diffusion coefficients for ascorbic acid and dopamine were found 4.12 × 10?5 and 4.43 × 10?5 (cm2s?1), respectively. High stability, good reproducibility, rapid response, easy surface regeneration and fabrication are the important characteristics of the proposed sensor. The resulting peaks from the electrocatalytic oxidation of AA and DA were well resolved with good sensitivity. A linear response was observed for AA and DA in the concentration range of 1 × 10?5 to 3 × 10?3 M and 4 × 10?6 to 2.2 × 10?4 M, respectively.  相似文献   

17.
Prussian blue nanoparticles (PBNPs) were prepared by a self‐assembly process on a glassy carbon electrode (GCE) modified with poly(o‐phenylenediamine) (PoPD) film. The stepwise fabrication process of PBNP‐modified PoPD/GCE was characterized using scanning electron microscopy and electrochemical impedance spectroscopy. The prepared PBNPs showed an average size of 70 nm and a homogeneous distribution on the surface of the modified electrode. The PBNPs/PoPD/GCE showed electrocatalytic activity towards the oxidation of pyridoxine (PN) and was used as an amperometric sensor. The modified electrode exhibited a linear response for PN oxidation over the concentration range 3–38.5 μM with a detection limit of ca 6.10 × 10?7 M (S/N = 3) and sensitivity of 2.79936 × 103 mA M?1 cm?2 using an amperometric method. The mechanism and kinetics of the catalytic oxidation reaction of PN were investigated using cyclic voltammetry and chronoamperometry. The values of α, kcat and D were estimated as 0.36, 1.089 × 102 M?1 s?1 and 8.9 × 10?5 cm2 s?1, respectively. This sensor also exhibited good anti‐interference and selectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
《Analytical letters》2012,45(17):3147-3160
Abstract

The multiwalled carbon nanotube–nickel hydroxide composite film used to modify glassy carbon electrode was prepared and confirmed by transmission electron microscopy and cyclic voltammetry. The process and mechanism of film formation were discussed in detail. The electrode modified with the composite film exhibited good catalytic activity toward electrochemical oxidation of hydrogen peroxide in 0.1 mol/L sodium hydroxide solution. Various factors affecting the electrocatalytic activity of nickel hydroxide film were investigated. The anodic peak current increased with the increased concentration of hydrogen peroxide. The linear range for the determination of hydrogen peroxide was from 1.5 × 10?6 mol/L to 2.5 × 10?3 mol/L with the detection limit 6.1 × 10?7 mol/L (S/N = 3). And the proposed method was applied to the determination of hydrogen peroxide in disinfector with higher sensitivity and lower detection limit.  相似文献   

19.
The electrocatalytic oxidation of hydrazine at a carbon paste electrode spiked with acetylferrocene as a mediator was studied by cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. In contrast to other ferrocenic compounds, acetylferrocene exhibits a chemical irreversible behavior, but it can act as an effective mediator for electrocatalytic oxidation of hydrazine, too. The heterogeneous electron transfer rate constant between acetylferrocene and the electrode substrate (carbon paste) and the diffusion coefficient of spiked acetylferrocene in silicon oil were estimated to be about 3.45×10?4 cm s?1 and 4.45×10?9 cm2 s?1, respectively. It has been found that under the optimum conditions (pH 7.5) the oxidation of hydrazine occurs at a potential of about 228 mV less positive than that of an unmodified carbon paste electrode. The catalytic oxidation peak current of hydrazine was linearly dependent on its concentration and the obtained linear range was 3.09×10?5 M–1.03×10?3 M. The detection limit (2σ) has been determined as 2.7×10?5 M by cyclic voltammetry. Also, the peak current was increased linearly with the concentration of hydrazine in the range of 1×10?5 M–1×10?3 M by differential pulse voltammetry with a detection limit of 1×10?5 M. This catalytic oxidation of hydrazine has been applied as a selective, simple, and precise new method for the determination of hydrazine in water samples.  相似文献   

20.
《Analytical letters》2012,45(2):361-372
Abstract

A novel method to determinate inositol based on the electrocatalytic oxidation of inositol on the surface of a nickel hexacyanoferrate (NiHCF)–modified electrode was reported. The determination of inositol can be performed in the range of 1.0×10?4 to 5.8×10?3 mol/L with a detection limit of 5.0×10?5 mol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号