首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various properties of water clusters in the n = 2–34 size regime with the change of cluster size have been systemically explored based on the newly developed flexible-body and charge-fluctuating ABEEM/MM water potential model. The ABEEM/MM water model is to take ABEEM charges of all atoms, bonds, and lone-pairs of water molecules into the intermolecular electrostatic interaction term in molecular mechanics. The computed correlating properties characterizing water clusters (H2O) n (n = 2–34) include optimal structures, structural parameters, ABEEM charge distributions, binding energies, hydrogen bonds, dipole moments, and so on. The study of optimal structures shows that the ABEEM/MM model can correctly predict the following important structural features, such as the transition from two-dimensional (from dimer to pentamer) to three-dimensional (for clusters larger than the hexamer) structures at hexamer region, the transition from cubes to cages at dodecamer (H2O)12, the transition from all-surface (all water molecules on the surface of the cluster) to one water-centered (one water molecule at the center of the cluster, fully solvated) structures at (H2O)17, the transition from one to two internal molecules in the cage at (H2O)33, and so on. The first three structural transitions are in good agreement with those obtained from previous work, while the fourth transition is different from that identified by Hartke. Subsequently, a systematic investigation of structural parameters, ABEEM charges, energetic properties, and dipole moments of water clusters with increasing cluster size can provide important reference for describing the objective trait of hydrogen bonds in water cluster system, and also provide a strong impetus toward understanding how the water clusters approach the bulk limit.  相似文献   

2.
We investigated the dependence of the electrostatic potential on the size and the shape of various cluster models of the MgO(100) surface. Both Mg2+ and O2− adsorption sites have been considered. The clusters were embedded in a large array of point charges to provide a representation of the Madelung potential. We found that the electrostatic potential in the adsorption region shows a marked dependence on the size of the cluster, in particular, for non-stoichiometric clusters where the number of cations and anions differs considerably. These oscillations are due to (a) the different contribution to the electrostatic potential given by a point charge or by an extended ion, and (b) by the polarization of the ions at the cluster border. The effect of the oscillations in the electrostatic potential on the chemisorption properties was investigated for the case of CO2 interacting with surface and defect O2− sites of the MgO surface. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n– and VxOyCln– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln– and VxOyCl(L)(n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1–2)– and VxOy (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.   相似文献   

4.
Electronic relaxation dynamics of water cluster anions   总被引:1,自引:0,他引:1  
The electronic relaxation dynamics of water cluster anions, (H(2)O)(n)(-), have been studied with time-resolved photoelectron imaging. In this investigation, the excess electron was excited through the p<--s transition with an ultrafast laser pulse, with subsequent electronic evolution monitored by photodetachment. All excited-state lifetimes exhibit a significant isotope effect (tau(D)2(O)/tau(H)2(O) approximately 2). Additionally, marked dynamical differences are found for two classes of water cluster anions, isomers I and II, previously assigned as clusters with internally solvated and surface-bound electrons, respectively. Isomer I clusters with n > or = 25 decay exclusively by internal conversion, with relaxation times that extrapolate linearly with 1/n toward an internal conversion lifetime of 50 fs in bulk water. Smaller isomer I clusters (13 < or = n < or = 25) decay through a combination of excited-state autodetachment and internal conversion. The relaxation of isomer II clusters shows no significant size dependence over the range of n = 60-100, with autodetachment an important decay channel following excitation of these clusters. Photoelectron angular distributions (PADs) were measured for isomer I and isomer II clusters. The large differences in dynamical trends, relaxation mechanisms, and PADs between large isomer I and isomer II clusters are consistent with their assignment to very different electron binding motifs.  相似文献   

5.
The kinetics of chemical reactions of cobalt clusters Con with deuterium are described. Absolute rate constants have been measured in the size range n=7–68 at 293 K. The rate constants are found to be a strong function of cluster size, varying by a factor of 400. This size dependence is most prominent for n=7 to 25: Co15 is the most reactive cluster, and Co7–9 and Co19–20 are particularly unreactive. Abrupt changes in the rate constants from one cluster size to the next are observed. For the clusters above n=25, the rate constants show several less prominent maxima and minima superimposed on a slow, nearly monotonic increase with cluster size.  相似文献   

6.
Photodissociation and photodetachment of negatively charged sulfur dioxide clusters (SO2) n ? ,n=2–11, were investigated in the wavelength range from 458 to 660 nm. Electrons obtained from the interaction of photons with clusters were found to be produced in two photon processes forn≥3. Hence their detachment threshold energy is increased by at least 0.7 eV with respect to the dimer. Wavelength dependent depletion spectra indicate that the clusters are composed of a dimer anion chromophore solvated by neutral molecules. The spectral position of the absorption band is maintained and the shape evolves continuously with cluster size. However, a narrowing of the band with increasing cluster size is observed.  相似文献   

7.
Microscopic structures of 1-butanol (1-BuOH)–water mixtures in the presence and absence of salts are studied through the mass spectrometric analysis of clusters generated from the fragmentation of liquid droplets. The analysis of cluster structures provides information on the phase separation of 1-BuOH–water mixtures from the microscopic viewpoint. In a saturated solution of 1-BuOH in water, 1-BuOH exists as hydrated 1-BuOH clusters and self-associated 1-BuOH clusters. With further addition of 1-BuOH, a 1-BuOH rich phase is generated. When the salt (LiCl, NaCl, MgCl2, etc.) coexists in the 1-BuOH–water mixtures, the cation is preferentially solvated by the 1-BuOH to form M +(1-BuOH) m or M 2+(1-BuOH) m clusters: M + = Li+, Na+, Mg2+ = Mg2+, etc., m = 1, 2, 3, ... Since the formation of M +(1-BuOH) m corresponds to an increase of the self-associated 1-BuOH clusters in water, the presence of the salt induces the phase separation at lower 1-BuOH concentrations.  相似文献   

8.
Ethanol clusters are generated in a continuous He seeded supersonic expansion and doped with sodium atoms in a pick-up cell. By this method clusters of the type Na(C(2)H(5)OH)(n) are formed and characterized by determining size selectively their ionization potentials (IPs) for n = 2-40 in photoionization experiments. A continuous decrease to 3.1 eV is found from n = 2 to 6 and a constant value of 3.07 ± 0.06 eV for n = 10-40. This IP evolution is similar to the sodium-water and the sodium-methanol system. Quantum chemical calculations (B3LYP and MP2) of the IPs indicate adiabatic contributions to the photoionization process for the cluster sizes n = 4 and 5, which is similar to the sodium-methanol case. The results of the extrapolated IPs and the vertical binding energies (VEBs) of cluster anions are compared with the recently reported VEBs of solvated electrons in liquid water, methanol, and ethanol solutions in the range of 3.1-3.4 eV. The new results imply that the extrapolated VBEs of solvated electrons in anionic clusters match the VBE in liquid water, while they are about 0.5 eV too low for methanol. The influence of the presence of counterions on these findings is discussed.  相似文献   

9.
This paper studies the formation of a stable anion pair as a result of cluster interactions with water molecules (the number of molecules n=4, 6, 8, and 14). The hydration shells of the clusters obtained in a preliminary calculation are destructed to form closed chains of properly oriented water molecules in the space between the anions. The type of the resulting structure depends on the number of shared water molecules. The character of stabilization of the anion pair, determined by calculating different energy terms, also changes as n increases. The cyclic structures obtained in the region of the anion pair differ considerably from the structure of isolated Cl (H2O)n clusters and that of the aqueous solution of NaCl. The capture of water molecules by the anion pair is manifested in the nucleation of industrial steam. Institute of Thermal Physics, Ural Branch, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 37, No. 2, pp. 289–298, March–April, 1996. Translated by L. Smolina  相似文献   

10.
Anionic tetrahydrofuran clusters (THF)(n) (-) (1≤n≤100) are studied with photoelectron imaging as gas-phase precursors for electrons solvated in THF. Photoelectron spectra of clusters up to n=5 show two peaks, one of which is attributed to a solvated open chain radical anion and the other to the closed THF ring. At n=6, the spectra change shape abruptly, which become more characteristic of (THF)(n) (-) clusters containing solvated electrons. From n=6-100, the vertical detachment energies (VDEs) of these solvated electron clusters increase from 1.96 to 2.71 eV, scaling linearly with n(-1/3). For fully deuterated (THF-d8)(n) (-) clusters, the apparent transition to a solvated electron cluster is delayed to n=11. Extrapolation of the VDEs to infinite cluster size yields a value of 3.10 eV for the bulk photoelectric threshold. The relatively large VDEs at onset and small stabilization with increasing cluster size compared to other solvated electron clusters may reflect the tendency of the bulk solvent to form preexisting voids that can readily solvate a free electron.  相似文献   

11.
An ab initio molecular dynamics method was used to compare the ionic dissolution of soluble sodium chloride (NaCl) in water clusters with the highly insoluble silver chloride (AgCl). The investigations focused on the solvation structures, dynamics, and energetics of the contact ion pair (CIP) and of the solvent-separated ion pair (SSIP) in NaCl(H(2)O)(n) and AgCl(H(2)O)(n) with cluster sizes of n = 6, 10 and 14. We found that the minimum cluster size required to stabilize the SSIP configuration in NaCl(H(2)O)(n) is temperature-dependent. For n = 6, both configurations are present as two distinct local minima on the free-energy profile at 100 K, whereas SSIP is unstable at 300 K. Both configurations, separated by a low barrier (<10 kJ mol(-1)), are identifiable on the free energy profiles of NaCl(H(2)O)(n) for n = 10 and 14 at 300 K, with the Na(+)/Cl(-) pairs being internally solvated in the water cluster and the SSIP configuration being slightly higher in energy (<5 kJ mol(-1)). In agreement with the low bulk solubility of AgCl, no SSIP minimum is observed on the free-energy profiles of finite AgCl(H(2)O)(n) clusters. The AgCl interaction is more covalent in nature, and is less affected by the water solvent. Unlike NaCl, AgCl is mainly solvated on the surface in finite water clusters, and ionic dissolution requires a significant reorganization of the solvent structure.  相似文献   

12.
A global optimization called fast hybrid global optimization algorithm was proposed based on genetic algorithm, fast simulated algorithm and conjugated gradient algorithm. We employ it to search the global minimum energy structures of Ba2+(H2O)n clusters for n = 1–30 within the TIP4P model. The results show that Ba2+(H2O)n clusters have the n+0 structure while n = 1–8. When n is in the range 9 ≤ n ≤ 18, the number of water molecules in the first shell around the barium ion is 8 and the other water molecules arrange in the outer shell. In the global minimum structure of Ba2+(H2O)19, the number of the first shell water molecules adds up to 9, and the value is kept until n = 30. According to the computational results, a conclusion that hydration numbers for Ba2+ is 9 can be drawn, which is in agreement with the result by a Monte Carlo simulation.  相似文献   

13.
The intensity distribution of benzene+-Arn cluster ions formed by laser ionization of neutral clusters has been investigated: two main intensity anomalies (magic numbers atn=20 and 45) have been observed in the 15–60 size range. The evaporation dynamics of these species in the 2–50 microsecond time window following ionization has been studied using the electrostatic mirror of a reflectron time-of-flight mass spectrometer as a kinetic energy analyser capable to distinguish parent and daughter ions. The magic numbers are interpreted in terms of size dependent evaporation behaviors: beyondn=20, a sudden decrease of the evaporation energy is observed; in then=45–47 size range, the magic number is accounted for by the specific dynamics of then=46 and 47 clusters, in particular the possible loss of two argon atoms forn=47 within the experimental time window. These results and their implications on the cluster structure are discussed in the light of the evaporative ensemble model and compared to the evaporation characteristics of similar species, in particular the neat rare gas clusters.  相似文献   

14.
In this work, the potential energy curves of several low-lying excited states of M+(H2O)n = 1-4 (M = Li and Na) clusters with one M─O bond, related to the stretching of their M─O bond, were calculated in the gas phase. The time-dependent density functional theory and direct-symmetry-adapted cluster-configuration interaction were used in this study separately. Theoretical calculations showed that the charge transfer occurred between M+ and (H2O)n in the excited clusters so that the neutral metal atom was obtained at the dissociation limit of the potential curves. The excited potential curves of clusters were also calculated in the presence of the electrostatic field of water (EFW), and it was found that the charge transfer was blocked in the presence of EFW. The effect of the size of the (H2O)n cluster on the shape of the excited potential curves was investigated to observe how the M─O bond was affected in the excited states depending on the (H2O)n size. It was found that the increase in the size of the (H2O)n cluster increased the number of bonding excited potential curves. The difference between the electron density of the excited and ground electronic states was calculated to see how the charge transfer was affected by the size of the (H2O)n cluster.  相似文献   

15.
曾志荣  杨清传  麦松威  谢作伟 《中国化学》2002,20(11):1241-1248
IntroductionItisuniversallyunderstoodthatwritingH+ isshort handforasolvatedproton ,[H(solvent) n]+ ,thevalueofnandthedetailsofthecoordinationenvironmentareoftenunspecified .Isolationandstructuralcharacterizationofvarioussaltscontainingrepresentative [H(solven…  相似文献   

16.
Despite utmost importance in understanding water ionization process, reliable theoretical results of structural changes and molecular dynamics (MD) of water clusters on ionization have hardly been reported yet. Here, we investigate the water cations [(H2O)n = 2–6+] with density functional theory (DFT), Möller–Plesset second‐order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The complete basis set limits of interaction energies at the CCSD(T) level are reported, and the geometrical structures, electronic properties, and infrared spectra are investigated. The characteristics of structures and spectra of the water cluster cations reflect the formation of the hydronium cation moiety (H3O+) and the hydroxyl radical. Although most density functionals fail to predict reasonable energetics of the water cations, some functionals are found to be reliable, in reasonable agreement with high‐level ab initio results. To understand the ionization process of water clusters, DFT‐ and MP2‐based Born‐Oppenheimer MD (BOMD) simulations are performed on ionization. On ionization, the water clusters tend to have an Eigen‐like form with the hydronium cation instead of a Zundel‐like form, based on reliable BOMD simulations. For the vertically ionized water hexamer, the relatively stable (H2O)5+ (5sL4A) cluster tends to form with a detached water molecule (H2O). © 2013 Wiley Periodicals, Inc.  相似文献   

17.
The stability, infrared spectra and electronic structures of (ZrO2)n (n=3–6) clusters have been investigated by using density‐functional theory (DFT) at B3LYP/6‐31G* level. The lowest‐energy structures have been recognized by considering a number of structural isomers for each cluster size. It is found that the lowest‐energy (ZrO2)5 cluster is the most stable among the (ZrO2)n (n=3–6) clusters. The vibration spectra of Zr? O stretching motion from terminal oxygen atom locate between 900 and 1000 cm?1, and the vibrational band of Zr? O? Zr? O four member ring is obtained at 600–700 cm?1, which are in good agreement with the experimental results. Mulliken populations and NBO charges of (ZrO2)n clusters indicate that the charge transfers occur between 4d orbital of Zr atoms and 2p orbital of O atoms. HOMO‐LUMO gaps illustrate that chemical stabilities of the lowest‐energy (ZrO2)n (n=3–6) clusters display an even‐odd alternating pattern with increasing cluster size.  相似文献   

18.
The coordination cluster compounds of tetraselenomolybdate and tetraselenotungstate anions with metal ions are reviewed. New heteroselenometallic cluster compounds are primarily of interest regarding their structures and reactivities, and their potential as non-linear optical (NLO) materials. This article focuses from a synthetic and structural point of view on coordination cluster compounds with tetraseleno-molybdate and -tungstate anions as polydentate ligands. A comprehensive survey is presented of the heteroselenometallic clusters known to date according to the number of center [MSe4]2− (M=Mo, W) anions. Representative spectroscopic and NLO properties of these clusters are also discussed.  相似文献   

19.
Electrospray ionization (ESI) of tryptophan gives rise to multiply charged, non‐covalent tryptophan cluster anions, [Trpn–xH]x?, in a linear ion trap mass spectrometer, as confirmed by high‐resolution experiments performed on a Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometer. The smallest multiply charged clusters that can be formed in the linear ion trap as a function of charge state are: x = 2, n = 7; x = 3, n = 16; x = 4, n = 31. The fragmentation of the dianionic cluster [Trp9–2H]2? was examined via low‐energy collision‐induced dissociation (CID), ultraviolet photodissociation (UVPD) at 266 nm and electron‐induced dissociation (EID) at electron energies ranging from >0 to 30 eV. CID proceeds mostly via charge separation and evaporation of neutral tryptophan. The smallest doubly charged cluster that can be formed via evaporation of neutral tryptophans is [Trp7–2H]2?, consistent with the observation of this cluster in the ESI mass spectrum. UVPD gives singly charged tryptophan clusters ranging from n = 2 to n = 9. The latter ion arises from ejection of an electron to give the radical anion cluster, [Trp9–2H]?.. The types of gas‐phase EID reactions observed are dependent on the energy of the electrons. Loss of neutral tryptophan is an important channel at lower energies, with the smallest doubly charged ion, [Trp7–2H]2?, being observed at 19.8 eV. Coulomb explosion starts to occur at 19.8 eV to form the singly charged cluster ions [Trpx–H]? (x = 1–8) via highly asymmetric fission. At 21.8 eV a small amount of [Trp2–H–NH3]? is observed. Thus CID, UVPD and EID are complementary techniques for the study of the fragmentation reactions of cluster ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Various properties of typical structures of water clusters in the n = 2–34 size regime with the change of cluster size have been systematically explored. Full optimizations are carried out for the structures presented in this article at the Hartree–Fock (HF) level using the 6‐31G(d) basis set by taking into account the positions of all atoms within the cluster. The influence of the HF level on the results has been reflected by the comparison between the binding energies of (H2O)n (n = 2–6, 8, 11, 13, 20) calculated at the HF level and those obtained from high‐level ab initio calculations at the second‐order Møller–Plesset (MP2) perturbation theory and the coupled cluster method including singles and doubles with perturbative triples (CCSD(T)) levels. HF is inaccurate when compared with MP2 and CCSD(T), but it is more practical and allows us to study larger systems. The computed properties characterizing water clusters (H2O)n (n = 2–34) include optimal structures, structural parameters, binding energies, hydrogen bonds, charge distributions, dipole moments, and so on. When the cluster size increases, trends of the above various properties have been presented to provide important reference for understanding and describing the nature of the hydrogen bond. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号