首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of group 5 metal atoms and methyl halides give carbon-metal single, double, and triple bonded complexes that are identified from matrix IR spectra and vibrational frequencies computed by DFT. Two different pairs of complexes are prepared in reactions of methyl fluoride with laser-ablated vanadium and tantalum atoms. The two vanadium complexes (CH(3)-VF and CH(2)=VHF) are persistently photoreversible and show a kinetic isotope effect on the yield of CD(2)=VDF. Identification of CH(2)=TaHF and CH[triple bond]TaH(2)F(-), along with the similar anionic Nb complex, suggests that the anionic methylidyne complex is a general property of the heavy group 5 metals. Reactions of Nb and Ta with CH(3)Cl and CH(3)Br have also been carried out to understand the ligand effects on the calculated structures and the vibrational characteristics. The methylidene complexes become more distorted with increasing halogen size, while the calculated C=M bond lengths and stretching frequencies decrease and increase, respectively. The anionic methylidyne complexes are less favored with increasing halogen size. Infrared spectra show a dramatic increase of the Ta methylidenes upon annealing, suggesting that the formation of CH(3)-TaX and its conversion to CH(2)=TaHX require essentially no activation energy.  相似文献   

2.
Methane activation by group 5 transition-metal atoms in excess argon and the matrix infrared spectra of reaction products have been investigated. Vanadium forms only the monohydrido methyl complex (CH3-VH) in reaction with CH4 and upon irradiation. On the other hand, the heavier metals form methyl hydride and methylidene dihydride complexes (CH3-MH and CH2=MH2) along with the methylidyne trihydride anion complexes (CHMH3-). The neutral products, particularly the methylidene complex, increase markedly on irradiation whereas the anionic product depletes upon UV irradiation or addition of a trace of CCl4 or CBr4 to trap electrons. Other absorptions that emerge on irradiation and annealing increase markedly at higher precursor concentration and are attributed to a higher-order product ((CH3)2MH2)). Spectroscopic evidence suggests that the agostic Nb and Ta methylidene dihydride complexes have two identical metal-hydrogen bonds.  相似文献   

3.
Reaction of laser-ablated Mo atoms with CH(4) in excess argon forms the CH(3)-MoH, CH(2)=MoH(2), and CH(triple bond)MoH(3) molecules, which are identified from infrared spectra by isotopic substitution and density functional theory frequency calculations. These simple methyl, methylidene, and methylidyne molybdenum hydride molecules are reversibly interconverted by alpha-H transfers upon visible and ultraviolet irradiations. The methylidene dihydride CH(2)=MoH(2) exhibits CH(2) and MoH(2) distortion and agostic interaction to a lesser degree than CH(2)=ZrH(2). Molybdenum methylidyne trihydride CH(triple bond)MoH(3) is a stable C(3v) symmetry molecule.  相似文献   

4.
Formation and characterization of thorium methylidene CH2=ThHX complexes   总被引:1,自引:0,他引:1  
Lyon JT  Andrews L 《Inorganic chemistry》2005,44(23):8610-8616
Laser-ablated thorium atoms react with methyl fluoride to give the CH2=ThHF molecule as the major product observed and trapped in solid argon. Infrared spectroscopy, isotopic substitution, and density functional theoretical frequency calculations confirm the identification of this methylidene complex. The four strongest computed absorptions (Th-H stretch, Th=C stretch, CH2 wag, and Th-F stretch) are the four vibrational modes observed. The CH2=ThHCl and CH2=ThHBr species formed from methyl chloride and methyl bromide exhibit the first three of these modes in the infrared spectra. The computed structures (B3LYP and CCSD) show considerable agostic interaction, similar to that observed for the Group 4 CH2=MHX (M = Ti, Zr, Hf) methylidene complexes, and the agostic angle and C=Th bond length decrease slightly in the CH2=ThHX series (X = F, Cl, Br).  相似文献   

5.
Laser-ablated W atoms react with CH4 in excess argon to form the CH3-WH, CH2=WH2, and CH[triple bond]WH3 molecules with increasing yield in this order of product stability. These molecules are identified from matrix infrared spectra by isotopic substitution. Tungsten methylidene and methylidyne hydride molecules are reversibly interconverted by alpha-H transfers upon visible and ultraviolet irradiations. Matrix infrared spectra and DFT/B3LYP calculations show that CH[triple bond]WH3 is a stable molecule with C3v symmetry, but other levels of theory were required to describe agostic distortion for CH2=WH2. Analogous reactions with Cr gave only CH3-CrH, which is calculated to be by far the most stable product.  相似文献   

6.
Reactions of laser-ablated group 3 metal atoms with methyl halides have been carried out in excess of Ar during condensation and the matrix infrared spectra studied. The metals are as effective as other early transition metals in providing insertion products (CH3-MX) and higher oxidation state methylidene complexes (CH2-MHX) (X = F, Cl, Br) following alpha-hydrogen migration. Unlike the cases of the group 4-6 metals, the calculated methylidene complex structures show little evidence for agostic distortion, consistent with the previously studied group 3 metal methylidene hydrides, and the C-M bond lengths of the insertion and methylidene complexes are comparable to each other. However, the C-Sc bond lengths are 0.013, 0.025, and 0.029 A shorter for the CH2-ScHX complexes, respectively, and the spin densities are consistent with weak C(2p)-Sc(3d) pi bonding. The present results reconfirm that the number of valence electrons on the metal is important for agostic interaction in simple methylidene complexes.  相似文献   

7.
Simple molybdenum methyl, carbene, and carbyne complexes, [CH3--MoF], [CH2=MoHF], and [CH[triple chemical bond]MoH(2)F], were formed by the reaction of laser-ablated molybdenum atoms with methyl fluoride and isolated in an argon matrix. These molecules provide a persistent photoreversible system through alpha-hydrogen migration between the carbon and metal atoms: The methyl and carbene complexes are produced by applying UV irradiation (240-380 nm) while the carbyne complex is depleted, and the process reverses on irradiation with visible light (lambda>420 nm). An absorption at 589.3 cm(-1) is attributed to the Mo--F stretching mode of [CH3--MoF], which is in fact the most stable of the plausible products. Density functional theory calculations show that one of the alpha-hydrogen atoms of the carbene complex is considerably bent toward the metal atom (angle-spherical HCMo=84.5 degrees ), which provides evidence of a strong agostic interaction in the triplet ground state. The calculated C[triple chemical bond]Mo bond length in the carbyne is in the range of triple-bond values in methylidyne complexes.  相似文献   

8.
The reactions between uranium atoms and CH3X (X = F, Cl, and Br) molecules are investigated in a solid argon matrix. The major products formed on ultraviolet irradiation are the CH2=UHX methylidene complexes. DFT calculations predict these triplet ground-state structures to be stable and to have significant agostic interactions. Parallels between the uranium and analogous thorium methylidene complexes are discussed.  相似文献   

9.
Treatment of [Tp'(CO)(2)W triple bond C--PPh(3)][PF(6)] (Tp' = hydridotris(3,5-dimethylpyrazolylborate)) with Na[HBEt(3)] in THF forms the methylidyne complex Tp'(CO)(2)W triple bond C--H via formyl and carbene intermediates Tp'(CO)(C(O)H)W triple bond C- PPh(3) and Tp'(CO)(2)W=C(PPh(3))(H), respectively. Spectroscopic features reported for Tp'(CO)(2)W triple bond C--H include the W triple bond C stretch (observed by both IR and Raman spectroscopy) and the (183)W NMR signal (detected by a (1)H, (183)W 2D HMQC experiment). Protonation of the Tp'(CO)(2)W triple bond C--H methylidyne complex with HBF(4).Et(2)O yields the cationic alpha-agostic methylidene complex [Tp'(CO)(2)W=CH(2)][BF(4)]. The methylidyne complex Tp'(CO)(2)W triple bond C-H can be deprotonated with alkyllithium reagents to provide the anionic terminal carbide Tp'(CO)(2)W triple bond C--Li; a downfield resonance at 556 ppm in the (13)C NMR spectrum has been assigned to the carbide carbon. The terminal carbide Tp'(CO)(2)W triple bond C-Li adds electrophiles at the carbide carbon to generate Tp'(CO)(2)W triple bond C--R (R = CH(3), SiMe(3), I, C(OH)Ph(2), CH(OH)Ph, and C(O)Ph) Fischer carbynes. A pK(a) of 28.7 was determined for Tp'(CO)(2)W triple bond C--H in THF by titrating the terminal carbide Tp'(CO)(2)W triple bond C--Li with 2-benzylpyridine and monitoring its conversion to Tp'(CO)(2)W triple bond C--H with in situ IR spectroscopy. Addition of excess Na[HBEt(3)] to neutral Tp'(CO)(2)W triple bond C--H generates the anionic methylidene complex [Na][Tp'(CO)(2)W=CH(2)]. The synthetic methodology for generating an anionic methylidene complex by hydride addition to neutral Tp'(CO)(2)W triple bond C--H contrasts with routes that utilize alpha-hydrogen abstraction or hydride removal from neutral methyl precursors to generate methylidene complexes. Addition of PhSSPh to the anionic methylidene complex in solution generates the saturated tungsten product Tp'(CO)(2)W(eta(2)-CH(2)SPh) by net addition of the SPh(+) moiety.  相似文献   

10.
The simple methylidene (CH2=TiHX) and Grignard-type (CH3TiX) complexes are produced by reaction of methyl chloride and bromide with laser-ablated Ti atoms and isolated in a solid Ar matrix, and they form a persistent photoreversible system via alpha-hydrogen migration between the carbon and titanium atoms. The Grignard-type product is transformed to the methylidene complex upon UV (240 nm < lambda < 380 nm) irradiation and vice versa with visible (lambda > 530 nm) irradiation. More stable dimethyl dihalide complexes [(CH3)2TiX2] are also identified, whose relative concentration increases upon annealing and at high methyl halide concentration. The reaction products are identified with three different groups of absorptions on the basis of the behaviors upon broadband photolysis and annealing, and the vibrational characteristics are in a good agreement with DFT computation results.  相似文献   

11.
Infrared spectrum and structure of CH2=ThH2   总被引:1,自引:0,他引:1  
The actinide methylidene CH2=ThH2 molecule is formed in the reaction of laser-ablated thorium atoms with CH4 and trapped in a solid argon matrix. The five strongest infrared absorptions computed by density functional theory (two ThH2 stretches, C=Th stretch, CH2 wag, and ThH2 bend) are observed in the infrared spectrum. The computed structure shows considerable agostic bonding distortion of the CH2 and ThH2 subunits in the simple actinide methylidene dihydride CH2=ThH2 molecule, which is similar to the transition metal analogue, CH2=HfH2.  相似文献   

12.
Methane activation has been carried out by laser-ablated Sn, Pb, Sb, and Bi atoms. All four metals generate the insertion complex (CH(3)-MH), but subsequent H-migration from C to M to form CH(2)-MH(2) and CH-MH(3) complexes is not observed. Our previous and present experimental and computational results indicate that the higher oxidation state complexes become less favored with increasing atomic mass in groups 14 and 15, which is opposite the general trend found for transition metals. The C-H bond insertion evidently occurs during reaction on sample condensation, and the product dissociates on broad-band photolysis afterward. The insertion complex contains a near right angle C-M-H moiety because of high p contribution from the metal center to the C-M and M-H bonds unlike many transition-metal analogues. The computed methylidene structures for these main group metals are not agostic possibly because of the absence of valence d-orbitals.  相似文献   

13.
Andrews L  Cho HG  Wang X 《Inorganic chemistry》2005,44(13):4834-4842
Laser-ablated titanium atoms react with methane to form the insertion product CH3TiH, which undergoes a reversible photochemical alpha-H transfer to give the methylidene complex CH2=TiH2. On annealing a second methane activation occurs to produce (CH3)2TiH2. These molecules are identified from matrix infrared spectra by isotopic substitution (CH4, 13CH4, CD4, CH2D2) and comparison to DFT frequency calculations. The computed planar structure for singlet ground-state CH2=TiH2 shows CH2 distortion and evidence for agostic bonding (H-C-Ti, 91.4 degrees), which is supported by the spectra for CHD=TiHD.  相似文献   

14.
Cho HG  Andrews L 《Inorganic chemistry》2008,47(5):1653-1662
Rhenium carbyne complexes (HC identical with ReH 3, HC identical with ReH 2X, HC identical with ReHX 2, [X = F, Cl, and Br] and CH 3C identical with ReH 3) are produced by reactions of laser-ablated Re atoms with methane, methyl halides, methylene halides, and ethane via oxidative C-H(X) insertion and alpha-hydrogen migration in favor of the carbon-metal triple bond. The stabilities of the carbyne complexes relative to other possible products are predicted by DFT calculations. The diagnostic methylidyne C-H stretching absorptions of HC identical with ReH 3 and its mono- and dihalo derivatives are observed on the blue sides of the precursor C-H stretching bands, and the frequency decreases and the bond length increases in the order of H, F, Cl, and Br, following the decreasing s character in hybridization for the C-H bond. The dihalo methylidynes have higher C-H stretching frequencies and s characters than the monohalo species. The rhenium methylidynes have C s structures, and as a result the HC identical with ReH 3 and CH 3C identical with ReH 3 complexes have two equivalent shorter and one longer Re-H bonds, as compared to the tungsten methylidyne HC identical with WH 3 with three equivalent W-H bonds.  相似文献   

15.
Lyon JT  Andrews L 《Inorganic chemistry》2007,46(12):4799-4808
Group 4 transition metal methylidene difluoride complexes (CH2=MF2) are formed by the reaction of methylene fluoride with laser-ablated metal atoms and are isolated in an argon matrix. Isotopic substitution of the CH2F2 precursor and theoretical computations (B3LYP and CCSD) confirm product identifications and assignments. Our calculations indicate that the CH2=MF2 complexes have near C2v symmetry and are considerably more stable than other possible products (CH2(mu-F)MF and CHF=MHF). The primary reaction exothermicity provides more than enough energy to activate the initial bridge-bonded CH2(mu-F)MF products on the triplet potential energy surface to complete an alpha-F transfer to form the very stable CH2=MF2 products. Analogous experiments with CHF3 produce CHF=TiF2, which is not distorted at the C-H bond, whereas the heavier group 4 metals form lower-energy triplet HC/MF3 complexes, which contain weak degenerate C(p)-M(d) pi-bonding interactions. Comparisons are made with the CH2=MHF methylidene species, which showed considerable agostic distortions.  相似文献   

16.
Tetranuclear cubane-type rare-earth methylidene complexes consisting of four "Cp'LnCH(2)" units, [Cp'Ln(μ(3)-CH(2))](4) (4-Ln; Ln = Tm, Lu; Cp' = C(5)Me(4)SiMe(3)), have been obtained for the first time through CH(4) elimination from the well-defined polymethyl complexes [Cp'Ln(μ(2)-CH(3))(2)](3) (2-Ln) or mixed methyl/methylidene precursors such as [Cp'(3)Ln(3)(μ(2)-Me)(3)(μ(3)-Me)(μ(3)-CH(2))] (3-Ln). The reaction of the methylidene complex 4-Lu with benzophenone leads to C═O bond cleavage and C═C bond formation to give the cubane-type oxo complex [Cp'Lu(μ(3)-O)](4) and CH(2)═CPh(2), while the methyl/methylidene complex 3-Tm undergoes sequential methylidene addition to the C═O group and ortho C-H activation of the two phenyl groups of benzophenone to afford the bis(benzo-1,2-diyl)ethoxy-chelated trinuclear complex [Cp'(3)Tm(3)(μ(2)-Me)(3){(C(6)H(4))(2)C(O)Me}] (6-Tm).  相似文献   

17.
Laser-ablated lanthanide metal atoms were condensed with CH(2)F(2) in excess argon at 6 K or neon at 4 K. New infrared absorption bands are assigned to the oxidative addition product methylene lanthanide difluorides on the basis of deuterium substitution and vibrational frequency calculations with density functional theory (DFT). Two dominant absorptions in the 500 cm(-1) region are identified as lanthanide-fluoride stretching modes for this very strong infrared absorption. The predominantly lanthanide-carbon stretching modes follow a similar trend of increasing with metal size and have characteristic 30 cm(-1) deuterium and 14 cm(-1) (13)C isotopic shifts. The electronic structure calculations show that these CH(2)LnF(2) complexes are not analogous to the simple transition and actinide metal methylidenes with metal-carbon double bonds that have been investigated previously, because the lanthanide metals (in the +2 or +3 oxidation state) do not appear to form a π-type bond with the CH(2) group. The DFT and ab initio correlated molecular orbital theory calculations predict that these complexes exist as multiradicals, with a Ln-C σ bond and a single electron on C-2p weakly coupled with f(x) (x = 1 (Ce), 2 (Pr), 3(Nd), etc.) electrons in the adjacent Ln-4f orbitals. The Ln-C σ bond is composed of about 15% Ln-5d,6s and 85% C-sp(2) hybrid orbital. The Ln orbital has predominantly 6s and 5d character with more d-character for early lanthanides and increasing amounts of s-character across the row. The Ln-F bonds are almost purely ionic. Accordingly, the argon-neon matrix shifts are large (13-16 cm(-1)) for the ionic Ln-F bond stretching modes and small (~1 cm(-1)) for the more covalent Ln-C bond stretching modes.  相似文献   

18.
赵强  冯大诚 《物理化学学报》2012,28(6):1361-1367
采用量子化学方法,通过MCH2X…ClF(M=Cu,Ag,Au;X=F,Cl,Br)和CH3X…ClF两类复合物的对比,探讨了过渡金属对卤键相互作用强度的影响.CH3X…ClF复合物只有卤键相互作用,而优化MCH2X…ClF复合物除了得到一种只含有卤键相互作用的构型外,还得到一种含有过渡金属和Cl原子相互作用的稳定构型.含有过渡金属的复合物稳定性明显增加,Ag取代的复合物稳定性增加最为明显,Cu次之,Au最不明显.X原子最负分子表面静电势(MEP)减小是复合物稳定性增加的根本原因.利用自然键轨道(NBO)及分子中原子(AIM)分析进一步对体系的分子间相互作用进行了探讨.二阶稳定化能与键鞍点处拓扑性质的计算结果与相互作用能符合得很好.  相似文献   

19.
在DFT-B3LYP及MP2/6-311++G**水平上分别求得CH3SH…HOCl氢键复合物和CH3SH…ClOH卤键复合物势能面上的稳定构型. 频率分析表明, 与单体HOCl相比, 在两种复合物中, Cl(9)—O(7)和H(8)—O(7)键伸缩振动频率发生显著的红移. 经MP2/6-311++G**水平计算的含基组重叠误差(BSSE)校正的气相中相互作用能分别为-19.23和-6.85 kJ&#8226;mol-1. 自然键轨道理论(NBO)分析表明, 在CH3SH…ClOH卤键复合物中, 引起Cl(9)—O(7)键变长的因素包括2种电荷转移: (i)孤对电子LP[S(1)]1→σ*[Cl(9)—O(7)]; (ii)孤对电子LP[S(1)]2→σ*[Cl(9)—O(7)], 其中孤对电子LP[S(1)]2→σ*[Cl(9)—O(7)]转移占主要作用, 总的结果是使σ*[Cl(10)—O(11)]的自然布居数增加, 同时O(7)和Cl(9)原子s成分均增加的杂化重优具有与电荷转移作用相同的“拉长效应”; 在CH3SH…HOCl氢键复合物中也存在类似的电荷转移, 但是O(7)原子的再杂化效应不同于前者. 自然键共振理论(NRT)进行键序分析表明, 在氢键复合物和卤键复合物中, H(8)—O(7)和Cl(9)—O(7)键的键序都减小. 通过分子中原子理论(AIM)分析了复合物中氢键和卤键的电子密度拓扑性质.  相似文献   

20.
Infrared spectrum and bonding in uranium methylidene dihydride, CH2=UH2   总被引:1,自引:0,他引:1  
Uranium atoms activate methane upon ultraviolet excitation to form the methyl uranium hydride CH3-UH, which undergoes alpha-H transfer to produce uranium methylidene dihydride, CH2=UH2. This rearrangement most likely occurs on an excited-quintet potential-energy surface and is followed by relaxation in the argon matrix. These simple U+CH4 reaction products are identified through isotopic substitution (13CH4, CD4, CH2D2) and density functional theory frequency and structure calculations for the strong U-H stretching modes. Relativistic multiconfiguration (CASSCF/CASPT2) calculations substantiate the agostic distorted C1 ground-state structure for the triplet CH2=UH2 molecule. We find that uranium atoms are less reactive in methane activation than thorium atoms. Our calculations show that the CH2=UH2 complex is distorted more than CH2=ThH2. A favorable interaction between the low energy open-shell U(5f) sigma orbital and the agostic hydrogen contributes to the distortion in the uranium methylidene complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号