首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The inhibition of amyloid‐β (Aβ) aggregation has been regarded as the primary therapeutic strategy for Alzheimer's diseases (AD). Currently, many kinds of amyloid inhibitors have been explored, but these inhibitors have their own drawbacks. This study proposes and demonstrates a new kind of inhibitor in this work by making use of protease endowed with high selectivity to prevent Aβ aggregation. To do this, a nanoconjugate that is composed of chymotrypsin, Aβ aptamer, and gold nanoparticle is designed and fabricated. The nanoconjugate can actively capture Aβ through interaction between the aptamer and Aβ, and destroy the target peptides through proteolysis mediated by the adjacent protease molecules. Compared with the conventional inhibitors that only passively bind with Aβ, this new kind of inhibitor may provide a novel insight to control Aβ aggregation. The multivalent binding and efficient enzymatic reaction toward Aβ may also enable a more complete clearance of Aβ, which might achieve a better treatment effect for AD in the future.  相似文献   

2.
Amyloid precursor protein (APP) is the precursor protein to amyloid β (Aβ), the main constituent of senile plaques in Alzheimer's disease (AD). Endogenous Aβ peptides reflect the APP processing, and greater knowledge of different APP degradation pathways is important to understand the mechanism underlying AD pathology. When one analyzes longer Aβ peptides by low-energy collision-induced dissociation tandem mass spectrometry (MS/MS), mainly long b-fragments are observed, limiting the possibility to determine variations such as amino acid variants or post-translational modifications (PTMs) within the N-terminal half of the peptide. However, by using electron capture dissociation (ECD), we obtained a more comprehensive sequence coverage for several APP/Aβ peptide species, thus enabling a deeper characterization of possible variants and PTMs. Abnormal APP/Aβ processing has also been described in the lysosomal storage disease Niemann-Pick type C and the major large animal used for studying this disease is cat. By ECD MS/MS, a substitution of Asp7 → Glu in cat Aβ was identified. Further, sialylated core 1 like O-glycans at Tyr10, recently discovered in human Aβ (a previously unknown glycosylation type), were identified also in cat cerebrospinal fluid (CSF). It is therefore likely that this unusual type of glycosylation is common for (at least) species belonging to the magnorder Boreoeutheria. We here describe a detailed characterization of endogenous APP/Aβ peptide species in CSF by using an online top-down MS-based method.  相似文献   

3.
Aβ肽的多聚化和纤维化在阿尔茨海默氏症(Alzheimer's diseas)的发生中起关键作用, 其中以Aβ_((1-42))的致病作用为最强,因此阻断其聚集成为阿尔茨海默氏症一种潜在的治疗方式. 作者在研究中发现某些化合物可以结合于Aβ_((12-28))肽段. 该文采用~1H-~1H COSY、 TOCSY、 ROESY和~(15)N-HSQC多种核磁分析方法, 对此肽段的~1H和~(15)N NMR谱信号进行了归属和详细分析, 为进一步研究其与小分子抑制剂的相互作用提供了基础.  相似文献   

4.
Molecular Diversity - Short synthetic peptide molecules which bind to a specific target protein with a high affinity to exert its function are known as peptide aptamers. The high specificity of...  相似文献   

5.

Background

Protein aggregation plays important roles in several neurodegenerative disorders. For instance, insoluble aggregates of phosphorylated tau and of Aβ peptides are cornerstones in the pathology of Alzheimer's disease. Soluble protein aggregates are therefore potential diagnostic and prognostic biomarkers for their cognate disorders. Detection of the aggregated species requires sensitive tools that efficiently discriminate them from monomers of the same proteins. Here we have established a proximity ligation assay (PLA) for specific and sensitive detection of Aβ protofibrils via simultaneous recognition of three identical determinants present in the aggregates. PLA is a versatile technology in which the requirement for multiple target recognitions is combined with the ability to translate signals from detected target molecules to amplifiable DNA strands, providing very high specificity and sensitivity.

Results

For specific detection of Aβ protofibrils we have used a monoclonal antibody, mAb158, selective for Aβ protofibrils in a modified PLA, where the same monoclonal antibody was used for the three classes of affinity reagents required in the assay. These reagents were used for detection of soluble Aβ aggregates in solid-phase reactions, allowing detection of just 0.1 pg/ml Aβ protofibrils, and with a dynamic range greater than six orders of magnitude. Compared to a sandwich ELISA setup of the same antibody the PLA increases the sensitivity of the Aβ protofibril detection by up to 25-fold. The assay was used to measure soluble Aβ aggregates in brain homogenates from mice transgenic for a human allele predisposing to Aβ aggregation.

Conclusions

The proximity ligation assay is a versatile analytical technology for proteins, which can provide highly sensitive and specific detection of Aβ aggregates - and by implication other protein aggregates of relevance in Alzheimer's disease and other neurodegenerative disorders.  相似文献   

6.
Plaques containing the aggregated β-Amyloid (Aβ) peptide in the brain are the main indicators of Alzheimer’s disease. Fibrils, the building blocks of plaques, can also be produced in vitro and consist of a regular arrangement of the peptide. The initial steps of fibril formation are not well understood and could involve smaller aggregates (oligomers) of Aβ. Such oligomers have even been implicated as the toxic agents. Here, a method to study oligomers on the time scale of aggregation is suggested. We have labeled the 40 residue Aβ peptide variant containing an N-terminal cysteine (cys-Aβ) with the MTSL [1-oxyl-2,2,5,5-tetramethyl-Δ-pyrroline-3-methyl] methanethiosulfonate spin label (SL-Aβ). Fibril formation in solutions of pure SL-Aβ and of SL-Aβ mixed with Aβ was shown by Congo-red binding and electron microscopy. Continuous-wave 9 GHz electron paramagnetic resonance reveals three fractions of different spin-label mobility: one attributed to monomeric Aβ, one to a multimer (8–15 monomers), and the last one to larger aggregates or fibrils. The approach, in principle, allows detection of oligomers on the time scale of aggregation.  相似文献   

7.
Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.  相似文献   

8.
This paper describes the application of two novel screening technologies, i.e. Domain Scan (24- and 30-mer peptides) and Matrix Scan (24-mer peptides) technology, in the mapping of a discontinuous epitope on FSH-beta for a series of 20 monoclonal antibodies. 11 out of 20 mAb's, mapping of which was not successful by conventional Pepscan technology (12-mer peptides), showed selective binding to peptide-constructs corresponding to the beta3-loop of FSH in the Domain and/or Matrix Scan. Systematic replacement analysis studies with peptide-construct 57VYETVRVPGCAC-SAc-ADSLYTYPVATQ81 revealed that for most mAb's the amino acids R62, A70, D71, and L73 form the core of the epitope. A Domain Scan performed in the C-O format showed highly selective binding for mAb's 1 and 2 with only three beta1-beta3 peptide-constructs covering the residues 60TVRVPGCAHHADSLY74 in combination with 10IAIEKEECRFAI21, while for mAb 10 binding was observed with peptide-constructs containing the C-terminal residues 97RGLGPSYCSFGEMKE114 in combination with the residues 10IAIEKEECRFAI21. A Matrix Scan of mAb 17 showed that peptides from four different regions on FSH (1st strand beta3-loop, alpha 1-loop, long alpha2-loop, det. loop) showed enhanced binding in combination with several 70ADSL73-containing peptides. BIACORE measurements with mAb's 1, 2, 13, and 17 using a set of 21 different peptide(-construct)s partially confirmed the Domain and Matrix Scan screening results. Only 24- and 33-mer peptides covering both the 1st and 2nd strand of the beta3-loop showed measurable binding. Cyclic beta3-loop peptide mimics were found to bind significantly stronger (Kd approximately 5 microM) than the lineair analogues, in agreement with the fact that the discontinuous epitope is part of a loop structure. Coupling of the lineair beta1-peptide 1oIAIEKEECRFAI21 to the linear beta3-peptide *52TFKELVYETVRVPGCAHHADSLYTYPVATQAH83# via disulfide bond formation showed a 2-3 fold increase in Kd, thus conforming participation of the beta 1-loop in antibody binding for these mAb's.  相似文献   

9.
We report the design and characterization of quartz surfaces that can bind to three retinal based chromophores. The amine terminated surfaces were engineered in order to mimic the environment of the opsin protein that accommodates binding of chromophore molecules in the human eye. Each surface coupling step was characterized by water contact angle measurements, ellipsometry, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission infrared spectroscopy. The spectroscopic techniques confirmed that the three chromophore molecules can bind to the surface using a Schiff base mode. Our data suggests that the availability of the amine groups on the surface is critical in the accommodation of the binding of different chromophores.  相似文献   

10.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by deposition of extracellular amyloid plaques comprised from fibrillar aggregates of the amyloid-β peptide (Aβ). Cu2+ interactions with Aβ appear to be involved in both the production of reactive oxygen species and the misfolding of Aβ into oligomeric intermediates including covalently cross-linked dimers. We have previously investigated the Cu2+ coordination of Aβ monomers in detail, whilst others have shown that Aβ fibrils coordinate Cu2+ in a similar manner to Aβ monomers. However, the coordination of low-molecular-weight Aβ species, which are believed to be responsible for neuronal dysfunction in AD, has not been widely investigated. Here, we report the first study of Cu2+ coordination by synthetic Aβ dimers containing an artificial diaminopimelic acid (DAP) or a dityrosine cross-link at residue 10. Our preliminary findings show that dityrosine cross-linking imparts unique structural constraints, resulting in Cu2+ coordination distinct from Aβ monomers and fibrils, which may be relevant to the greater toxicity of low-molecular-weight Aβ oligomers in AD.  相似文献   

11.
Two-dimensional gratings are generated on poly-carbonate films spin-coated onto thin gold-silver bimetallic layers by two-beam interference method. Sub-micrometer periodic polymer dots and stripes are produced illuminating the poly-carbonate surface by p- and s-polarized beams of a frequency quadrupled Nd:YAG laser, and crossed gratings are generated by rotating the substrates between two sequential treatments. It is shown by pulsed force mode atomic force microscopy that the mean value of the adhesion is enhanced on the dot-arrays and on the crossed gratings. The grating-coupling on the two-dimensional structures results in double peaks on the angle dependent resonance curves of the surface plasmons excited by frequency doubled Nd:YAG laser. The comparison of the resonance curves proves that a surface profile ensuring minimal undirected scattering is required to optimize the grating-coupling, in addition to the minimal modulation amplitude, and to the optimal azimuthal orientation. The secondary minima are the narrowest in presence of linear gratings on multi-layers having optimized composition, and on crossed structures consisting of appropriately oriented polymer stripes. The large coupling efficiency and adhesion result in high detection sensitivity on the crossed gratings. Bio-sensing is realized by monitoring the rotated-crossed grating-coupled surface plasmon resonance curves, and detecting the chemical heterogeneity by tapping-mode atomic force microscopy. The interaction of Amyloid-β peptide, a pathogenetic factor in Alzheimer disease, with therapeutical molecules is demonstrated.  相似文献   

12.
Combining a single-molecule study of protein binding with a coarse grained molecular dynamics model including solvent (water molecules) effects, we find that biomolecular recognition is determined by flexibilities in addition to structures. Our single-molecule study shows that binding of CBD (a fragment of Wiskott-Aldrich syndrome protein) to Cdc42 involves bound and loosely bound states, which can be quantitatively explained in our model as a result of binding with large conformational changes. Our model identified certain key residues for binding consistent with mutational experiments. Our study reveals the role of flexibility and a new scenario of dimeric binding between the monomers: first bind and then fold.  相似文献   

13.
We developed two labeling methods for the direct observation of single-stranded DNA (ssDNA), using a ssDNA binding protein and a ssDNA recognition peptide. The first approach involved protein fusion between the 70-kDa ssDNA-binding domain of replication protein A and enhanced yellow fluorescent protein (RPA-YFP). The second method used the ssDNA binding peptide of Escherichia coli RecA labeled with Atto488 (ssBP-488; Atto488-IRMKIGVMFGNPETTTGGNALKFY). The labeled ssλDNA molecules were visualized over time in micro-flow channels. We report substantially different dynamics between these two labeling methods. When ssλDNA molecules were labeled with RPA-YFP, terminally bound fusion proteins were sheared from the free ends of the ssλDNA molecules unless 25-mer oligonucleotides were annealed to the free ends. RPA-YFP-ssλDNA complexes were dissociated by the addition of 0.2 M NaCl, although complex reassembly was possible with injection of additional RPA-YFP. In contrast to the flexible dynamics of RPA-YFP-ssλDNA complexes, the ssBP-488-ssλDNA complexes behaved as rigid rods and were not dissociated even in 2 M NaCl.  相似文献   

14.
Janani Sampath 《Molecular physics》2019,117(23-24):3642-3650
The leucine-lysine amphiphilic peptide LKα14 has been used to study fundamental driving forces in processes such as peptide-surface binding and biomineralization. Here, we employ molecular dynamics (MD) simulations in tandem with replica exchange metadynamics to probe the binding mechanism and thermodynamics of LKα14 on silica. We also investigate the effect that the nature of the silica surface – crystalline vs. amorphous, has on the binding properties and peptide-surface conformations. We find that water adsorbs differently on both surfaces; it forms a denser interfacial layer on the crystalline surface, compared to the amorphous surface. This causes the peptide to bind more strongly on the amorphous surface than the crystalline surface. Cluster analysis shows that the peptide adopts a helical conformation at both surfaces, with a greater distribution of states on the crystalline surface. Peptide binding is primarily through lysine interactions, in line with prior experimental results.  相似文献   

15.
We propose a novel cheminformatics approach that combines structure and ligand-based design to identify target-specific pharmacophores with well-defined exclusion ability. Our strategy includes the prediction of selective interactions, developing structure, and knowledge-based selective pharmacophore models, followed by database screening and molecular docking. This unique strategy was employed in addressing the off-target toxicity of Gsk3β and CDKs. The connections of Gsk3β in eukaryotic cell apoptosis and the extensive potency of Gsk3β inhibitors to block cell death have made it a potential drug-discovery target for many grievous human disorders. Gsk3β is phylogenetically very closely related to the CDKs, such as CDK1 and CDK2, which are suggested to be the off-target proteins of Gsk3β inhibitors. Here, we have employed novel computational approaches in designing the ligand candidates that are potentially inhibitory against Gsk3β, with well-defined the exclusion ability to CDKs. A structure-ligand -based selective pharmacophore was modeled. This model was used to retrieve molecules from the zinc database. The hits retrieved were further screened by molecular docking and protein-ligand interaction fingerprints. Based on these results, four molecules were predicted as selective Gsk3β antagonists. It is anticipated that this unique approach can be extended to investigate any protein-ligand specificity.  相似文献   

16.
Avidin microspheres were prepared using the sonochemical method. It was found that avidin microspheres can bind biotin, but to a lesser degree than the native protein. The binding of the biotin molecules to the avidin microspheres was probed primarily by TPD measurements.  相似文献   

17.
In this paper, we describes different methods to immobilize Japanese encephalitis virus (JEV) antibodies in human serum onto the interdigitated surface of a microelectrode sensor for optimizing electrochemical detection: (1) direct covalent binding to the silanized surface, (2) binding to the silanized surface via a cross-linker of glutaraldehyde (GA), (3) binding to glutaraldehyde/silanized surface via goat anti-human IgG polyclonal antibody and (4) binding to glutaraldehyde/silanized surface via protein A (PrA). Field emission scanning electron microscopy, Fourier transform infrared spectrometry, and fluorescence microscopy are used to verify the characteristics of antibodies on the interdigitated surface after the serum antibodies immobilization. The analyzed results indicate that the use of protein A is an effective choice for immobilization and orientation of antibodies in serum for electrochemical biosensors. This study provides an advantageous immobilization method of serum containing antiviral antibodies to develop electrochemical biosensors for preliminary screening of viruses in clinical samples from outbreaks.  相似文献   

18.
Summary To isolate peptide ligands that bound calmodulin (CaM) specifically, we screened an M13 phage library displaying cyclized octamer random peptides with immobilized bovine CaM. Isolates were recovered, sequenced, and deduced to express nine independent peptides, five of which contained the sequence Trp-Gly-Lys (WGK). Four of the nine peptide sequences were synthesized in cyclized, biotinylated form. All of the peptides required Ca2+ to bind CaM. The cyclized, disulfide-bonded form of one such peptide, SCLRWGKWSNCGS, bound CaM better than its reduced form or an analogue in which the cysteine residues were replaced by serine. The cyclized peptide also exhibited the ability to inhibit CaM-dependent kinase activity. Systematic alanine substitution of residues in this peptide sequence implicate the tryptophan residue as being critical for binding, with other residues contributing to binding to varying degrees. Cloning of ligand targets (COLT) confirmed the specificity of one of the cyclized peptides, yielding full-length and C-terminal CaM clones, in addition to a full-length clone of troponin C, a CaM-related protein. This study has demonstrated that conformationally constrained peptides isolated from a phage library acted as specific, Ca2+-dependent CaM ligands.  相似文献   

19.
Clustering of Ti on carbon nanostructures has proved to be an obstacle in their use as hydrogen storagematerials. Using density functional theory we show that Ti atoms will not cluster at moderate concentrations when doped into nanoporous graphene. Since each Ti atom can bind up to three hydrogen molecules with an average binding energy of 0.54 eV/H2, this material can be ideal for storing hydrogen under ambient thermodynamic conditions. In addition, nanoporous graphene is magnetic with or without Ti doping, but when it is fully saturated with hydrogen, the magnetism disappears. This novel feature suggests that nanoporous graphene cannot only be used for storing hydrogen, but also as a hydrogen sensor.  相似文献   

20.
Borna Disease Virus (BDV) is suspected to infect humans and to be associated with psychiatric disorders. To this date, BDV-reactive antibodies provide the only reliable markers to diagnose human BDV infection. Their diagnostic value, however, was recently questioned by the observation that these antibodies recognize BDV antigen with only low avidity, a typical feature of cross-reacting antibodies. This raised the possibility that the human BDV-reactive antibodies were triggered by other pathogens than BDV. The recent establishment of a peptide array-based screening test allowed the further characterization of these antibodies. It revealed the presence of small amounts of BDV-reactive antibodies in crude human sera that specifically recognized various epitopes of three major BDV proteins. Most importantly, the purified epitope-specific antibodies were shown to bind to BDV antigen with high avidity when assayed by conventional immunofluorescence assay (IFA) or by Western blot. These results are compatible with the view that the presence of BDV-reactive antibodies in human sera reflects an infection with BDV, although the poor affinity maturation remains unexplained. Furthermore, it demonstrates that peptide array-based screening tests are a reliable system for identifying monospecific antibodies from human polyclonal sera with high specificity and sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号