首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
At present, high energy electron linear accelerators (LINACs) producing photons with energies higher than 10 MeV have a wide use in radiotherapy (RT). However, in these beams fast neutrons could be generated, which results in undesired contamination of the therapeutic beams. These neutrons affect the shielding requirements in RT rooms and also increase the out-of-field radiation dose to patients. The neutron flux becomes even more important when high numbers of monitor units are used, as in the intensity modulated radiotherapy. Herein, to evaluate the exposure of patients and medical personnel, it is important to determine the full radiation field correctly. A model of the dual photon beam medical LINAC, Siemens ONCOR, used at the University Hospital Centre of Osijek was built using the MCNP611 code. We tuned the model according to measured photon percentage depth dose curves and profiles. Only 18 MV photon beams were modeled. The dependence of neutron dose equivalent and energy spectrum on field size and off-axis distance in the patient plane was analyzed. The neutron source strength (Q) defined as a number of neutrons coming from the head of the treatment unit per x-ray dose (Gy) delivered at the isocenter was calculated and found to be 1.12 × 1012 neutrons per photon Gy at isocenter. The simulation showed that the neutron flux increases with increasing field size but field size has almost no effect on the shape of neutron dose profiles. The calculated neutron dose equivalent of different field sizes was between 1 and 3 mSv per photon Gy at isocenter. The mean energy changed from 0.21 MeV to 0.63 MeV with collimator opening from 0 × 0 cm2 to 40 × 40 cm2. At the 50 cm off-axis the change was less pronounced. According to the results, it is reasonable to conclude that the neutron dose equivalent to the patient is proportional to the photon beam-on time as suggested before. Since the beam-on time is much higher when advanced radiotherapy techniques are used to fulfill high conformity demands, this makes the neutron flux determination even more important. We also showed that the neutron energy in the patient plane significantly changes with field size. This can introduce significant uncertainty in dosimetry of neutrons due to strong dependence of the neutron detector response on the neutron energy in the interval 0.1–5 MeV.  相似文献   

2.
Ambient dose equivalent, H*(10), and personal dose equivalent, Hp(10), were calculated in different points located inside two different treatment rooms. 15-MV Varian and 15-MV Elekta accelerators were used in these studies. The geometry of both accelerators heads and treatment rooms were built up to perform the Monte Carlo simulations. The patient was also simulated using an ICRU phantom. Calculations were done using the MCNPX code. Ambient dose equivalents rates from neutrons range between 1.2 and 419 mSv/h in the Elekta treatment room and between 0.96 and 1140 mSv/h in the Varian treatment room, depending on the location. These values suggest a larger neutron production in the Varian than in the Elekta accelerator.  相似文献   

3.
在碳离子放射治疗中,碳离子束在剂量配送过程中会与束流输运线相互作用,形成以中子辐射为主的外辐射场.由于中子是高LET射线,具有较高的相对生物学效应,减少碳离子放疗中产生的次级中子有助于降低放疗后正常组织并发症几率及二次肿瘤风险.利用蒙特卡罗方法对保守情况(能量为400 MeV/u,多叶光栅完全闭合)下碳离子治疗被动式束...  相似文献   

4.
Photoneutron contaminations in and out of high energy X-ray beams of the medical linear accelerator SATURNE 20 (CGR) of the Radiotherapy Department of Omeed Hospital in Isfahan, Iran, have been determined using 250 μm polycarbonate (PC) dosimeters, in strips or in sheets, processed by electrochemical etching (ECE) using specially designed ECE chambers to etch larger sheets. A two dimensional or topographical distribution of neutron contamination was also determined in a full size beam. The neutron dose equivalents (Hn) in the beam of 18 MV X-rays at 80 cm FSD were determined to be linear functions of X-ray dose equivalents (Hx) up to 1400 cSv. The distribution of the Hn at different X-ray doses showed bell-shape profiles with maxima at the isocenter. The ratios of dose equivalents of neutrons to those of X-rays increased as the field size increased having values of 0.22%, 0.28%, 0.31% and 0.37% for field sizes of 10×10, 20×20, 30×30, and 40×40 cm2 respectively. Although such neutron dose equivalents can be corrected for patient treatment, it can cause radiation protection problems for workers where the design of the facility is not well planned.  相似文献   

5.
Recent developments in accelerator physics have led to new challenges for radiation protection dosimetry. Doses have to be determined for workplace fields which are characterized by high-energy radiation, a dominant contribution from neutrons, high intensities and pulsed time structure This may present problems for active measuring devices. As is well known, the ambient dose equivalent is often underestimated by area monitors operating in high-energy neutron fields behind shielding. Therefore, it is desirable to calibrate survey monitors in a characterized neutron field with the type of spectral fluence distribution that is expected behind shielding, i.e. where the main dose from neutrons arises from two peaks with mean energies of about 1 MeV and 100 MeV, respectively. Such a neutron fluence distribution is produced by the irradiation of a Fe-target with 200 MeV/u 12C-ions. Measurements with the extended range Bonner sphere spectrometer NEMUS of PTB were performed at two positions inside the experimental area Cave A of the heavy-ion synchrotron SIS at GSI. The measured neutron spectra show different fluence contributions for the two peaks at the two positions. The results were compared to Monte Carlo Simulations with MCNPX and FLUKA.  相似文献   

6.
PADC-based nuclear track detectors have been widely used as convenient ambient dosemeters in many working places. However, due to the large energy dependence of their response in terms of ambient dose equivalent (H1(10)) and to the diversity of workplace fields in terms of energy distribution, the appropriate calibration of these dosemeters is a delicate task. These are among the reasons why ISO has introduced the 12789 Series of Standards, where the simulated workplace neutron fields are introduced and their use to calibrate neutron dosemeters is recommended. This approach was applied in the present work to the UAB PADC-based nuclear track detectors. As a suitable workplace, the treatment room of a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa), was chosen. Here the neutron spectra in two points of tests (1.5 m and 2 m from the isocenter) were determined with the INFN-LNF Bonner Sphere Spectrometer equipped with Dysprosium activation foils (Dy-BSS), and the values of H1(10) were derived on this basis. The PADC dosemeters were exposed in these points. Their workplace specific H*(10) responses were determined and compared with those previously obtained in different simulated workplace or reference (ISO 8529) neutron fields.  相似文献   

7.
An innovative accelerator-based neutron source for boron neutron capture therapy has started operation at the Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using 7Li(p,n)7Be threshold reaction.In the article, techniques to detect neutron and gamma-rays at the facility are described. Gamma radiation is measured with NaI and BGO gamma-spectrometers. The total yield of neutrons is determined by measuring the 477 keV γ-quanta from beryllium decay. For the rough analysis of the generated neutron spectrum we used bubble detectors. As the epithermal neutrons are of interest for neutron capture therapy the NaI detector is used as activation detector. We plan to use a time-of-flight technique for neutron spectra measurement. To realize this technique a new solution of short time neutron generation is proposed.  相似文献   

8.
Undesired radiation exposure in normal tissues around a treatment volume in proton and carbon-ion radiotherapies is less than that in the conventional radiotherapies due to physical and/or biological properties of charged particles. Such exposure is always considered in a treatment planning, however, undesired exposure in normal tissues far from the treatment volume cannot be considered in the treatment planning, because it is caused by secondary radiation as well as leakage primary particles. Though this exposure is considerably lower than that near the treatment volume, it may be not negligible to estimate the risk of secondary cancer especially for the young patients. In particular, the assessment of the secondary neutrons that inevitably produced within the patient and beam line devices is very important due to the potency of their biological effect. The distributions of the absorbed dose and the biological effectiveness in phantom/patient are required to assess the risk, and Monte Carlo calculation plays a key role due to a difficulty of the measurements. In this study, comparison of measured and calculated in-air neutrons at the patient position in the Heavy Ion Medical Accelerator in Chiba (HIMAC) treatment room are performed to verify the accuracy of the Monte Carlo code, PHITS. Our calculations underestimated epithermal neutrons measured by Bonner sphere system. This discrepancy may be caused by an insufficiency of the calculational geometry modeling, consequently an underestimation of neutrons scattered and moderated by the beam line devices. However, it is unlikely that the underestimation significantly contribute to the dose estimation in phantom. On the other hand, the calculation reproduced the measured ambient dose equivalents well because they were dominated by neutrons above 0.1 MeV. This result showed that the PHITS code has a potential ability to evaluate the neutron exposure of the patient in passive carbon-ion radiotherapy.  相似文献   

9.
This work focusses on the estimation of induced photoneutrons energy, fluence, and strength using nuclear track detector (NTD) (CR-39). Photoneutron energy was estimated for three different linear accelerators, LINACs as an example for the commonly used accelerators. For high-energy linear accelerators, neutrons are produced as a consequence of photonuclear reactions in the target nuclei, accelerator head, field-flattening filters and beam collimators, and other irradiated objects. NTD (CR-39) is used to evaluate energy and fluence of the fast neutron. Track length is used to estimate fast photoneutrons energy for linear accelerators (Elekta 10 MV, Elekta 15 MV, and Varian 15 MV). Results show that the estimated neutron energies for the three chosen examples of LINACs reveals neutron energies in the range of 1–2 MeV for 10 and 15 MV X-ray beams. The fluence of neutrons at the isocenter (Φtotal) is found to be (4×106 n cm2 Gy?1) for Elekta machine 10 MV. The neutron source strengths Q are calculated. It was found to be 0.2×1012 n Gy?1 X-ray at the isocenter. This work represents simple, low cost, and accurate methods of measuring fast neutrons dose and energies.  相似文献   

10.
This work presents an estimation of the neutron dose distribution for common bladder cancer cases treated with high-energy photons of 15 MV therapy accelerators. Neutron doses were measured in an Alderson phantom, using TLD 700 and 600 thermoluminescence dosimeters, resembling bladder cancer cases treated with high-energy photons from 15 MV LINAC and having a treatment plan using the four-field pelvic box technique. Thermal neutron dose distribution in the target area and the surrounding tissue was estimated. The sensitivity of all detectors for both gamma and neutrons was estimated and used for correction of the TL reading. TLD detectors were irradiated with a Co60 gamma standard source and thermal neutrons at the irradiation facility of the National Institute for Standards (NIS). The TL to dose conversion factor was estimated in terms of both Co60 neutron equivalent dose and thermal neutron dose. The dose distribution of photo-neutrons throughout each target was estimated and presented in three-dimensional charts and isodose curves. The distribution was found to be non-isotropic through the target. It varied from a minimum of 0.23 mSv/h to a maximum of 2.07 mSv/h at 6 cm off-axis. The mean neutron dose equivalent was found to be 0.63 mSv/h, which agrees with other published literature. The estimated average neutron equivalent to the bladder per administered therapeutic dose was found to be 0.39 mSv Gy?1, which is also in good agreement with published literature. As a consequence of a complete therapeutic treatment of 50 Gy high-energy photons at 15 MV, the total thermal neutron equivalent dose to the abdomen was found to be about 0.012 Sv.  相似文献   

11.
Target photons mixed in the 144, 250 and 565 keV mono-energetic neutron calibration fields were measured using a cylindrical NaI(Tl) detector with 7.62 cm both in diameter and in length. The ambient dose equivalent H*(10) of the photons was evaluated by applying the “G(E) function” to the measured pulse height spectrum. Neutrons induce photons by nuclear reactions in the NaI(Tl) detector and affect the pulse height spectrum. In order to eliminate the influence of these neutron events, the time-of-flight technique was applied with operating the accelerator in the pulse mode. The ratios by the ambient dose equivalent H*(10) of the photons to the 144, 250 and 565 keV neutrons were evaluated to be 3.3%, 4.7% and 0.9%, respectively. Although high energy photons ranging from 6 to 7 MeV are emitted by the 19F(p,αγ)16O reactions, the dose of the target photons is low enough to calibrate neutron dosemeters except for ones with high sensitivity to the photons.  相似文献   

12.
The paper presents an overview of the applications of recombination chambers for dosimetric measurements at radiotherapy facilities. The chambers were used at electron, proton and heavy ion accelerators, in the beam and in the vicinity of the accelerators at very different dose rates. The examples of measurements discussed in the paper include: the determination of the absorbed dose and radiation quality parameters of a 170 MeV proton beam and BNCT (boron neutron capture therapy) beam, neutron dose measurements at a phantom surface outside the beam of a 15 MV electron medical accelerator, determination of ambient dose equivalent, H1 (10) outside the irradiated phantom in the proton therapy treatment room at JINR (Dubna, Russia), and at working places outside the shielding of the heavy ion therapy facility at GSI (Darmstadt, Germany).  相似文献   

13.
The European Commission has funded within its 6th Framework Programme a three-year project (2005–2007) called CONRAD, COordinated Network for RAdiation Dosimetry. A major task of the CONRAD Work Package “complex mixed radiation fields at workplaces” was to organise a benchmark exercise in a workplace field at a high-energy particle accelerator where neutrons are the dominant radiation component. The CONRAD benchmark exercise took place at the Gesellschaft für Schwerionenforschung mbH (GSI) in Darmstadt, Germany in July 2006. In this paper, the results of the spectrometry using four extended -range Bonner sphere spectrometers of four different institutes are reported. Outside Cave A the neutron spectra were measured with three spectrometers at six selected positions and ambient dose equivalent values were derived for use in the intercomparison with other area monitors and dosemeters. At a common position all three spectrometers were used to allow a direct comparison of their results which acts as an internal quality assurance. The comparison of the neutron spectra measured by the different groups shows very good agreement. A detailed analysis presents some differences between the shapes of the spectra and possible sources of these differences are discussed. However, the ability of Bonner sphere spectrometers to provide reliable integral quantities like fluence and ambient dose equivalent is well demonstrated in this exercise. The fluence and dose results derived by the three groups agree very well within the given uncertainties, not only with respect to the total energy region present in this environment but also for selected energy regions which contribute in certain strength to the total values. In addition to the positions outside Cave A one spectrometer was used to measure the neutron spectrum at one position in the entry maze of Cave A. In this case a comparison was possible to earlier measurements.  相似文献   

14.
To theoretically explore the feasibility of neutron dose characterized by Cerenkov photons, the relationship between Cerenkov photons and neutron dose in a water phantom was quantified using the Monte Carlo toolkit Geant4. Results showed that the ratio of the neutron dose deposited by secondary electrons above Cerenkov threshold energy to the total neutron dose is approximately a constant for monoenergetic neutrons from 0.01 eV to 100 eV. With the initial neutron beam energy from 0.01 eV to 100 eV, the number of Cerenkov photons has a good correlation with the total neutron dose along the central axis of the water phantom. The changes of neutron energy spectrum and mechanism analysis also explored at different depths. And the ratio of total neutron dose to the intensity of Cerenkov photons is independent of neutron energy for neutrons from 0.01 eV to 100 eV. These findings indicate that Cerenkov radiation also has potential in the application of neutron dose measurement in some specific fields.  相似文献   

15.
In this study we investigate the dependence of the sensitivity of a TEPC upon its surface area and demonstrate that a compact multi-element tissue equivalent proportional counter (METEPC) has a counting sensitivity comparable to a commercially available 12.7 cm (5 inch) diameter spherical TEPC. The METEPC incorporates 61 cylindrical counting volumes of internal diameter of 0.5 cm and height 5 cm, machined in a single block of tissue equivalent plastic. It is the simplest design available in the multi-element geometrical configuration and is approximately nine times smaller in volume than that of a conventional 12.7 cm spherical TEPC. The neutron sensitivity of commercially available TEPCs and the METEPC simulating a 2 μm tissue site size was examined experimentally using the McMaster University 1.25 MV double stage Tandetron accelerator, which produces low energy neutrons via the 7Li(p, n)7Be reaction. The mean energy of the neutron beams produced ranged from 34 keV to 354 keV. The results presented in this study suggests that the compact METEPC is able to produce measurements in low dose rate radiation environments with the same precision in a given length of time as could be obtained with a 12.7 cm diameter spherical TEPC.  相似文献   

16.
A passive neutron area monitor has been designed using Monte Carlo methods; the monitor is a polyethylene cylinder with pairs of thermoluminescent dosimeters (TLD600 and TLD700) as thermal neutron detector. The monitor was calibrated with a bare and a thermalzed 241AmBe neutron sources and its performance was evaluated measuring the ambient dose equivalent due to photoneutrons produced by a 15 MV linear accelerator for radiotherapy and the neutrons in the output of a TRIGA Mark III radial beam port.  相似文献   

17.
Contemporary linear accelerators applied in radiotherapy generate X-ray and electron beams with energies up to 20 MeV. Such high-energy therapeutic beams induce undesirable photonuclear (γ,n) and electronuclear (e,e'n) reactions in which neutrons and radioisotopes are produced. The originated neutron can also induce reactions such as simple capture, (n,γ), reactions that produce radioisotopes. In this work measurements of the non-therapeutic neutrons and the induced gamma radiation were carried out in the vicinity of a new medical accelerator, namely the Varian TrueBeam. The TrueBeam is a new generation Varian medical linac making it possible to generate the X-ray beams with a dose rate higher than in the case of the previous models by Varian. This work was performed for the X-ray beams with nominal potentials of 10 MV (flattening filter free), 15 MV and 20 MV, and for a 22 MeV electron beam. The neutron measurements were performed by means of a helium chamber and the induced activity method. The identification of radioisotopes produced during emission of the therapeutic beams was based on measurements of the energy spectra of gammas emitted in decays of the produced nuclei. The gamma energy spectra were measured with the use of the high-purity germanium detector. The correlation between the neutron field and the mode and nominal potential was observed. The strongest neutron fluence of 3.1 × 106 cm−2 Gy−1 and 2.0 × 106 cm−2 Gy−1 for the thermal and resonance energies, respectively, was measured during emission of the 20 MV X-ray beam. The thermal and resonance neutron fluence measured for the 15 MV X-rays was somewhat less, at 1.1 × 106 cm−2 Gy−1 for thermal neutrons and 6.7 × 105 cm−2 Gy−1 for resonance neutrons. The thermal and resonance neutron fluences were smallest for the 10 MV FFF beam and the 22 MeV electron beam and were around two orders of magnitude smaller than those of the 20 MV X-ray beam. This work has shown that the neutron reactions are dominant because of relatively high cross sections for many elements used in the accelerator construction. The detailed analysis of the measured spectra made it possible to identify 11 radioisotopes induced during TrueBeam delivery. In this work the following radioisotopes were identified: 56Mn, 122Sb, 124Sb, 131Ba, 82Br, 57Ni, 57Co, 51Cr, 187W, 24Na and 38Cl.  相似文献   

18.
It is proposed to construct a spallation neutron source (SNS) at Centre for Advanced Technology (CAT) based on a 1 GeV proton synchrotron with 100 MeV H LINAC as injector. Additionally, the LINAC can form the first 100 MeV part of a 1 GeV proton LINAC to be built in future for accelerator driven system (ADS) applications. We are exploring a configuration of the 100 MeV LINAC which will consist of an H ion source, a 4–6 MeV RFQ followed either by a 20 MeV drift tube LINAC (DTL) and 100 MeV separated function drift tube LINAC (SDTL) or a coupled cavity drift tube LINAC (CCDTL) structure. In this paper, we present the results of our preliminary physics design studies of the RFQ-SDTL, RFQ-CCDTL and RFQ-DTL-SDTL configurations. The design of the 4.5 MeV RFQ is discussed along with the matching sections between the RFQ-SDTL/DTL and RFQ-CCDTL. The choice of the accelerator configuration and that of various parameters of the individual accelerator structures under consideration are discussed. The design objectives are to arrive at a configuration which eases heat removal for CW operation and which is less prone to halo formation in order to reduce the beam loss at higher energies.  相似文献   

19.
The monitoring of neutron radiation from high-energy accelerators cannot fully rely on the standard dosimeters and radiometers manufactured in Russia, since these are sensitive only to neutrons with energies below some 10 MeV. This is because neutrons of higher energies can significantly contribute to the personnel doses both close to the accelerator shield and in the neutron multiscattered field around the shield. In this paper, we propose to measure the ambient neutron dose in energy range 10–2 MeV to 1 GeV with a device consisting of two polyethylene balls with diameters of 3 and 10 in. housing slow-neutron detectors. The larger ball also comprises a lead converter (10'' + Pb). This device can be implemented in zonal radiation monitoring in the near-accelerator area.  相似文献   

20.
A new pulsed neutron source based on a beam-blanking device has been under construction and improvement at the Moscow Meson Factory of the Institute for Nuclear Research of the Russian Academy of Sciences. Neutrons are generated in the course of the spallation process in a water-cooled tungsten target by a proton beam with an energy of 209 MeV. After water moderator (3 cm), neutrons are guided in three horizontal and one vertical channels with a length varying from 4 to 50 m. The standard duration of the proton pulse from the accelerator is 60 μs. At present, the average proton current is as high as 150 μA for a repetition rate of 50 Hz. The neutron fluence in the target is equal to 0.9 × 1015 neutrons/s, which corresponds to the requirements imposed on the intensity of modern pulsed neutron sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号